66 research outputs found

    Typing plasmids with distributed sequence representation

    Get PDF
    Multidrug resistant bacteria represent an increasing challenge for medicine. In bacteria, most antibiotic resistances are transmitted by plasmids. Therefore, it is important to study the spread of plasmids in detail in order to initiate possible countermeasures. The classification of plasmids can provide insights into the epidemiology and transmission of plasmid-mediated antibiotic resistance. The previous methods to classify plasmids are replicon typing and MOB typing. Both methods are time consuming and labor-intensive. Therefore, a new approach to plasmid typing was developed, which uses word embeddings and support vector machines (SVM) to simplify plasmid typing. Visualizing the word embeddings with t-distributed stochastic neighbor embedding (t-SNE) shows that the word embeddings finds distinct structure in the plasmid sequences. The SVM assigned the plasmids in the testing dataset with an average accuracy of 85.9% to the correct MOB type

    Evidence for the Role of Horizontal Transfer in Generating pVT1, a Large Mosaic Conjugative Plasmid from the Clam Pathogen, Vibrio tapetis

    Get PDF
    The marine bacterium Vibrio tapetis is the causative agent of the brown ring disease, which affects the clam Ruditapes philippinarum and causes heavy economic losses in North of Europe and in Eastern Asia. Further characterization of V. tapetis isolates showed that all the investigated strains harbored at least one large plasmid. We determined the sequence of the 82,266 bp plasmid pVT1 from the CECT4600T reference strain and analyzed its genetic content. pVT1 is a mosaic plasmid closely related to several conjugative plasmids isolated from Vibrio vulnificus strains and was shown to be itself conjugative in Vibrios. In addition, it contains DNA regions that have similarity with several other plasmids from marine bacteria (Vibrio sp., Shewanella sp., Listonella anguillarum and Photobacterium profundum). pVT1 contains a number of mobile elements, including twelve Insertion Sequences or inactivated IS genes and an RS1 phage element related to the CTXphi phage of V. cholerae. The genetic organization of pVT1 underscores an important role of horizontal gene transfer through conjugative plasmid shuffling and transposition events in the acquisition of new genetic resources and in generating the pVT1 modular organization. In addition, pVT1 presents a copy number of 9, relatively high for a conjugative plasmid, and appears to belong to a new type of replicon, which may be specific to Vibrionaceae and Shewanelleacae

    Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids

    Get PDF
    Plasmids can mediate horizontal gene transfer of antibiotic resistance, virulence genes, and other adaptive factors across bacterial populations. Here, we analyze genomic composition and pairwise sequence identity for over 10,000 reference plasmids to obtain a global map of the prokaryotic plasmidome. Plasmids in this map organize into discrete clusters, which we call plasmid taxonomic units (PTUs), with high average nucleotide identity between its members. We identify 83 PTUs in the order Enterobacterales, 28 of them corresponding to previously described archetypes. Furthermore, we develop an automated algorithm for PTU identification, and validate its performance using stochastic blockmodeling. The algorithm reveals a total of 276 PTUs in the bacterial domain. Each PTU exhibits a characteristic host distribution, organized into a six-grade scale (I-VI), ranging from plasmids restricted to a single host species (grade I) to plasmids able to colonize species from different phyla (grade VI). More than 60% of the plasmids in the global map are in groups with host ranges beyond the species barrier.This work was funded by grant BFU2017-86378-P from the Spanish MINEC

    The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses

    Get PDF
    Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity

    Gene Therapy Approaches Using Reproducible and Fully Penetrant Lentivirus-Mediated Endogenous Glioma Models

    No full text
    Animal models have proven invaluable for progress toward greater understanding of the etiology, pathogenesis, and genetics of a wide range of human diseases. The development of relevant brain tumor animal models is a critical resource for building our understanding of cancers that arise within the brain and for the development of novel therapies. The central role of these models is particularly apparent for gliomas, which are common and devastating primary brain tumors. Effective models accurately demonstrate pathological features and behavior that are analogous to the human disease. Models aim to develop tumors with high penetrance and low latency, features that are ideal for preclinical therapeutic development. Lentiviral vector-induced models fulfill these requirements while giving investigators excellent control over the genetic profile of resulting tumors. This flexibility is especially relevant in the context of recent advances in the understanding of the genetic lesions found in human grade IV glioma, glioblastoma multiforme (GBM). Further, these endogenous tumor models would be ideal for the testing of novel gene therapy strategies which could potentially be implemented in Phase 1 clinical trials for these devastating human brain cancers.Fil: Lynes, John. University Of Michigan Medical School; Estados UnidosFil: Koschmann, Carl. University Of Michigan Medical School; Estados UnidosFil: Wibowo, Mia. University Of Michigan Medical School; Estados UnidosFil: Saxena, Vandana. University Of Michigan Medical School; Estados UnidosFil: Candolfi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Moreno Ayala, Mariela Alejandra. University Of Michigan Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Castro, Maria Graciela. University Of Michigan Medical School; Estados UnidosFil: Lowenstein, Pedro R.. University Of Michigan Medical School; Estados Unido

    Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review.

    Get PDF
    Oritavancin, telavancin, and dalbavancin are recently marketed lipoglycopeptides that exhibit remarkable differences to conventional molecules. While dalbavancin inhibits the late stages of peptidoglycan synthesis by mainly impairing transglycosylase activity, oritavancin and telavancin anchor in the bacterial membrane by the lipophilic side chain linked to their disaccharidic moiety, disrupting membrane integrity and causing bacteriolysis. Oritavancin keeps activity against vancomycin-resistant enterocococci, being a stronger inhibitor of transpeptidase than of transglycosylase activity. These molecules have potent activity against Gram-positive organisms, most notably staphylococci (including methicillin-resistant Staphylococcus aureus and to some extent vancomycin-intermediate S. aureus), streptococci (including multidrug-resistant pneumococci), and Clostridia. All agents are indicated for the treatment of acute bacterial skin and skin structure infections, and telavancin, for hospital-acquired and ventilator-associated bacterial pneumonia. While telavancin is administered daily at 10 mg/kg, the remarkably long half-lives of oritavancin and dalbavancin allow for infrequent dosing (single dose of 1200 mg for oritavancin and 1000 mg at day 1 followed by 500 mg at day 8 for dalbavancin), which could be exploited in the future for outpatient therapy. Among possible safety issues evidenced during clinical development were an increased risk of developing osteomyelitis with oritavancin; taste disturbance, nephrotoxicity, and risk of corrected QT interval prolongation (especially in the presence of at-risk co-medications) with telavancin; and elevation of hepatic enzymes with dalbavancin. Interference with coagulation tests has been reported with oritavancin and telavancin. These drugs proved non-inferior to conventional treatments in clinical trials but their advantages may be better evidenced upon future evaluation in more severe infections
    • …
    corecore