
Typing Plasmids with Distributed Sequence 
Representation 

Moritz Kaufmann1, Martin Schüle2, Theo H. M. Smits1[0000-0002-1237-235X] and Joël F. 
Pothier1[0000-0002-9604-7780] 

1 Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource 
Sciences, Zurich University of Applied Sciences (ZHAW), Einsiedlerstr. 31, 8820 Wädenswil, 

Switzerland 
2 Bio-Inspired Modeling & Learning Systems, Institute of Applied Simulation, Zurich Univer-

sity of Applied Sciences (ZHAW), Schloss 1, 8820 Wädenswil, Switzerland 

moritz.kaufmann@zhaw.ch, martin.schuele@zhaw.ch, 
theo.smits@zhaw.ch, joel.pothier@zhaw.ch 

Abstract. Multidrug resistant bacteria represent an increasing challenge for med-
icine. In bacteria, most antibiotic resistances are transmitted by plasmids. There-
fore, it is important to study the spread of plasmids in detail in order to initiate 
possible countermeasures. The classification of plasmids can provide insights 
into the epidemiology and transmission of plasmid-mediated antibiotic re-
sistance. The previous methods to classify plasmids are replicon typing and MOB 
typing. Both methods are time consuming and labor-intensive. Therefore, a new 
approach to plasmid typing was developed, which uses word embeddings and 
support vector machines (SVM) to simplify plasmid typing. Visualizing the word 
embeddings with t-distributed stochastic neighbor embedding (t-SNE) shows that 
the word embeddings finds distinct structure in the plasmid sequences. The SVM 
assigned the plasmids in the testing dataset with an average accuracy of 85.9% to 
the correct MOB type. 
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1 Background 

1.1 Plasmids 

Plasmids are extrachromosomal DNA elements with a characteristic number of copies 
in the host. Plasmids are found in representatives of all three domains Archaea, Bacte-
ria and Eukarya [1]. Plasmids encode nonessential but often valuable genes for their 
host [2]. The plasmids allow genes to be horizontally exchanged via recombination and 
transposition. Since plasmids can enter new hosts via a variety of mechanisms, they can 
be regarded as a pool of extrachromosomal DNA that is shared across populations. The 
acquisition of such genes on plasmids enables the bacteria to react quickly to changing 
environmental influences, e.g. the presence of antibiotics, which would not be the case 
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if bacterial fitness were only dependent on de novo evolution [3]. Plasmids contain 
genes that are responsible for initiation and the control of replication. In addition they 
contain genes that encode a wide variety of phenotypes that help their bacterial hosts to 
exploit and adapt to their environments [4]. These properties are considered as addi-
tional functions and include antibiotic and heavy metal resistance, metabolic properties 
and pathogenicity factors. Such phenotypes have important consequences for human 
and animal health, environmental processes and microbial adaptation and evolution [5]. 

1.2 Plasmid Typing 

The classification of plasmids can provide insights into the epidemiology and transmis-
sion of plasmid-mediated antibiotic resistance. The previous methods to classify plas-
mids are replicon typing and MOB typing which use variation in replication loci and 
relaxase proteins, respectively. Replicons include various loci, none of which are uni-
versally present in plasmids [6]. On the other hand, relaxases are thought to occur in all 
plasmids mobilized by the relaxase-in-cis mechanism [7,8]. Nevertheless, the relaxase 
homology may be distant, even in plasmids of the same MOB type [9]. Recent studies 
show that the current typing schemes are not able to classify the complete diversity of 
plasmids [10]. As an example, 11% of the plasmids from the dataset (n = 2097) of Orlek 
et al. [10] could not be replicon-typed or MOB typed. 

1.3 Word Embeddings 

In natural language processing (NLP) a powerful method to represent language is by 
learning so-called embeddings. An embedding is a vector representation of a text data 
token. Commonly the tokens are words, and therefore we refer in our explanations to 
word embeddings, but the method is not restricted to words. In contrast to word vectors 
created by one-hot-encoding, which are binary, sparse (mostly made of zeros), high-
dimensional (same dimensionality as vocabulary), word embeddings are low-dimen-
sional floating-point vectors. In a good word embedding space synonyms have similar 
word vectors. Also, distance between word vectors reflect semantic and syntactic dis-
tances between those words [11]. A popular training technique to learn word embed-
dings is Word2Vec [12,13]. Word2vec consists of a two-layer neural network that is 
trained on the current word and its surrounding context words. The use of context words 
is inspired by the linguistic concept of distributional hypothesis, which states that words 
that appear in the same context have a similar meaning [14].  

1.4 Aim of Study 

The aim of this study is to determine whether plasmids can be represented as word 
embeddings, a method normally used in natural language processing, and subsequently 
classified by machine learning methods.  
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2 Methods 

2.1 Preparing the Dataset 

In order to test the new classification method for plasmids, the database with the origi-
nal queries of Orlek et al. [15] was downloaded [16]. The database consisted of 2097 
fully typed, complete, clinically relevant Enterobacteriaceae plasmids from the NCBI 
database. The data of the nucleotide sequences were loaded with the Biostrings package 
version 2.36.4 [17] to R version 3.5.1 using RStudio version 1.3.959. The nucleotide 
sequences were translated to amino acid sequences using the Biostrings package [17] 
using the standard genetic code. All fuzzy and stop codons automatically translated to 
X and *, respectively, were removed. To remove outliers, which could influence the 
training behavior of the machine learning methods, a box plot of the plasmid length 
was created. All plasmids marked as outliers were removed.  

2.2 Embedding Representation 

Inspired by NLP word embeddings, we created an embedding representation for amino 
acid sequences. Following Asgari and Mofrad [18], all amino acid sequences were split 
into triplets. Then, from one sequence, three sequences were created (see Fig. 2). These 
triplets are the “words” for which the word embedding is constructed. This is done since 
the most common techniques to study sequences in bioinformatics involves fixed –
length overlapping n-grams [19–21]. 

 
Fig. 1. Schematic illustration of the generated three sequences [18]. 

The word embeddings were trained using the Skip-Gram algorithm. To calculate the 
vectors for the embedding the R-package wordVectors version 2.0 was used [22]. The 
Skip-Gram model learns embeddings by trying to predict context words based on the 
given target word. Context words are words that occur in a defined window around the 
target word. Skip-Gram tries to find the corresponding n-dimensional vectors for a 
given training sequence of words, which maximize the log probability function. This 
gives similar words a similar representation in vector space 
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where N is the length of the training sequence, 2c is the considered window size for 
the context, wi is the center of the window, W is the number of words in the dictionary 
and vw and v’w are input and output n-dimensional representations of word w, respec-
tively. The probability p(wi+j|wj) is defined by a softmax function. Hierarchical soft-
max or negative sampling are effective approximations of such a softmax function. 
The wordVectors package uses negative sampling to approximate the softmax func-
tion. Negative sampling uses the following objective function to calculate the word 
vectors 
 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 ∏ 𝑝𝑝(𝐷𝐷 = 1|𝑐𝑐,𝑤𝑤;𝜃𝜃) ∏ 𝑝𝑝(𝐷𝐷 = 0|𝑐𝑐,𝑤𝑤;𝜃𝜃) (𝑤𝑤,𝑐𝑐)∈𝐷𝐷′  (𝑤𝑤,𝑐𝑐)∈𝐷𝐷  (2) 

 
where D is a set of word and context pairs (w, c) existing in the training data set (positive 
samples) and D' is a randomly generated set of false word and context pairs (w, c) 
(negative samples). p(D = 1|w, c; θ) is the probability that (w, c) comes from the training 
data. p(D = 0|w, c; θ) is the probability does not come from the training data. The term 
p(D = 1|c, w, θ) can be defined as a sigmoid function which can be used for the 
wordVectors 
 

 𝑝𝑝(𝐷𝐷 = 1|𝑤𝑤, 𝑐𝑐;𝜃𝜃) =  1
1+𝑒𝑒−𝑣𝑣𝑐𝑐 𝑣𝑣𝑤𝑤 

 (3) 

 
Here, the parameters θ are the word vectors we train within the optimization frame-
work vc while vw∈Rd are vector representations for the context c and the word w, re-
spectively [23]. In equation 2, the positive samples maximize the probabilities of the 
observed (w, c) pairs in the training data, while the negative samples prevent all vec-
tors from having the same value by not allowing certain incorrect (w, c) pairs [18]. To 
train different embeddings different vector sizes and context sizes were chosen. The 
vocabulary to train the word embeddings were all 8000 possible amino acid triplets. 
We then represent the entire plasmid as a word embedding, where the amino acid tri-
plets of each reading frame were added for each plasmid. This method follows Asgari 
and Mofrad [18]. 

2.3 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

High-dimensional word embeddings can be displayed and interpreted two-dimension-
ally with the t-SNE algorithm. We used the R-package Rtsne version 0.15 [24]. To 
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evaluate whether the individual MOB types are grouped into clusters, the data points 
were colored according to the MOB types assigned by Orlek et al. [10]. The t-SNE 
algorithm works as follows: first the similarity score in the original space is calculated 
from a distance matrix (Euclidean distance) of the input objects 

 𝑝𝑝𝑗𝑗|𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒 (
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which is then symmetrized using 

 𝑝𝑝𝑖𝑖𝑗𝑗 =  
𝑒𝑒𝑗𝑗|𝑖𝑖+𝑒𝑒𝑖𝑖|𝑗𝑗 

2𝑛𝑛
 (5) 

The parameter σ of each object is selected so that the perplexity in the original space 
takes a value as close as possible to the defined perplexity. The perplexity is a parameter 
that controls how many nearest neighbors are considered when the embedding is gen-
erated in low dimensional space. For the low dimensional space, the Cauchy distribu-
tion (t-distribution with one degree of freedom where the degree of freedom is the num-
ber of parameters that may vary independently) is used to represent the distribution of 
the objects 

 𝑞𝑞𝑖𝑖𝑗𝑗 =
(1+��𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗�� 2) −1

∑ (1+||𝑦𝑦𝑘𝑘−𝑦𝑦𝑙𝑙|| 2) −1𝑘𝑘≠l
 (6) 

The positions of the points in the low dimensional space are determined by minimizing 
the Kullback-Leiber divergence (KL) of the distribution Q to the distribution P. To 
minimize the KL-divergence a gradient descent algorithm is used. Since for large da-
tasets a normal gradient descent algorithm would be very computational expensive 
O(n2), a Barnes-Hut implementation of the algorithm, is used which leads to a compu-
tational complexity of nlog(n). The θ parameter was set to zero to perform an exact t-
SNE. The max_iter parameter was set to 1000. The PCA parameter was set to TRUE 
to perform a PCA prior to the t-SNE. To find the best parameters for the perplexity, 
each model was iterated over 50 cycles. The perplexity parameter was adjusted from 1 
to 50. The best fitting perplexity value was chosen according to the lowest KL-
divergence. 

2.4 Support Vector Machine Classification 

To classify the plasmids based on the embedding representation support vector ma-
chines are used. SVM with a linear kernel was chosen and implemented with the caret 
package 6.0-81 [25]. The caret package uses the implementation of the SVM algorithm 
by kernlab [26]. The SVM algorithm of the kernlab package uses the Sequential Mini-
mal Optimization (SMO) algorithm of Platt [27] to solve the quadratic programming 
(QP) optimization problem of the SVM. Training an SVM usually requires solving a 
very big QP optimization problem. The SMO algorithm breaks these big QP optimiza-
tion problems into a series of smallest possible QP problems. The small QP problems 
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can then be solved analytically, saving the time consuming numerical solving of a large 
QP problem [27]. To train the SVM, the data were first centered by subtracting the 
mean and then scaled by the division of the standard deviation. The partition of the data 
was 0.8/0.2 for training and test for each iteration. The method for optimizing the tuning 
parameters was random search. 

2.5 BLAST 

The BLAST searches to confirm the MOB types of before unclassified plasmids were 
carried out using the NCBI online tool tblastn version 2.8.1. The algorithm parameters 
were set to default. The search results were then filtered according to the used thresh-
olds for original MOB type queries used by Orlek et al. [10]. 

2.6 System 

The analyses were run on a PC equipped with an Intel Core i7-3930K processor ca-
denced at 3.20GHz (6 physical cores, 12 logical cores) and with 64 GB of physical 
memory. 

3 Results 

3.1 Data exploration 

Unknown plasmids account for around 700 occurrences in the data set with the original 
queries of Orlek et al [15]. The types MOBF and MOBP occur about 450 times each. 
MOBQ and MOBH were already significantly less present with around 150 counts. The 
types MOBC and in particular MOBV were very limited represented, which could lead 
to classification problems. The dataset was analyzed to check the plasmid lengths and 
the MOB class distribution (Figure 1). In total, 61 plasmids were marked as outliers. 
Even though all outliers are most likely plasmids, they were removed from the dataset, 
as outliers can have a negative effect on the training of the embedding. The average 
length is shown in the figure as a dashed line. MOBV plasmids were the shortest in 
length, while the group of MOBQ plasmids encompassed mainly short plasmids. The 
mean lengths of MOBC, MOBP and unclassified plasmids were almost comparable. The 
longest plasmids were in the MOBF and MOBH group, with MOBH plasmids being 
longer than MOBF plasmids. Except for the MOBV plasmids, all plasmids had a vari-
ance of about 50 kb in length. 
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Fig. 2. 

Fig. 3. Distribution of the length of the different MOB types of plasmids. Bp: base pairs.  

3.2 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

The lowest KL-divergence was achieved with a perplexity of 49. Figure 3 shows the 
1000-dimensional space of the embedding reduced to two dimensions. Each point is a 
vector representation of a plasmid. A clearly shaped structure was obtained.  
For the embeddings with 1000 entries, the SVM assigned the plasmids in the testing 
dataset with an average accuracy of 85.9% to the correct MOB type. With multi-class 
classification problems, however, the accuracy does not show the complete picture of 
the performance of the classifier. The same would apply to a data set with imbalanced 
classes. Cohen's kappa statistics (κ) is a measure which can handle multi-class and im-
balanced classes. For the model, κ was 0.80, indicating that the value is good to excel-
lent according to Greve and Wentura [28] and at the upper end with substantial agree-
ment according to Landis and Koch [29]. Table 1 shows that the classification of MOBF 
and MOBH was very successful with 93.8% and 97.4% balanced accuracy. The confu-
sion matrix also showed that MOBH was not confused with MOBF, although the plas-
mids in Figure 3 were very close to each other. MOBP was detected with 87.6% accu-
racy, which is still above the SVM average for all classes. However, MOBP was con-
fused with MOBF in 10.7% of the cases. Furthermore, MOBP was in 3.6% wrongly 
assigned to type MOBQ. Orlek et al. [10] reported problems to distinguish between 
MOBP and MOBQ. In the prediction column of MOBQ, 13 of the total of 51 MOBQ 
plasmids were assigned to class MOBP, which corresponded to 25.5% of all MOBQ 
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plasmids. However, this also meant that the representation of the plasmids with embed-
dings worked well, as the results were congruent with the previously obtained results 
from Orlek et al. [10]. MOBQ and MOBV showed the smallest accuracies, related to an 
underrepresentation of both classes in the training set. In the testing dataset, only very 
few plasmids with the respective classes were present and an inconsistent classification 
has a fatal effect on the accuracy. 

 
Fig. 4. Two-dimensional space representation of the 1000-dimensional word embeddings of the 
plasmids.  

Table 1. Confusion matrix SVM. 

Predictions 
Reference Balanced 

accuracy MOBC MOBF MOBH MOBP MOBQ MOBV 
MOBC 14 2 1 0 2 0 0.812 
MOBF 2 135 0 15 2 0 0.938 
MOBH 0 0 37 0 0 0 0.974 
MOBP 6 5 1 120 13 2 0.876 
MOBQ 0 0 0 5 34 0 0.826 
MOBV 0 0 0 0 0 1 0.667 

 
To investigate whether the SVM can be used to classify plasmids, which were previ-
ously unclassifiable by Orlek et al. [10], 939 unclassified plasmids from the data set 
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were tested with the SVM. The plasmids that could get classified with the SVM were 
subsequently checked with BLAST against the corresponding proteins used by Orlek 
et al. [10] for testing. Table 2 shows that 96 plasmids were assigned to a MOB type. 
Taking into account the thresholds of Orlek et al. [10], 62 plasmids could, after check-
ing with BLAST, still be assigned to a MOB type with relative security. This corre-
sponds to a decrease of unclassifiable plasmids of 3.04%.  

Table 2. BLAST verification of the SVM predicted MOB types. 

MOB 
type 

Total pre-
dicted 

Verified with 
BLAST 

Number of predictions < E-
value threshold 

E-value 
threshold 

MOBC 101 42 42 0.001 
MOBF 127 14 8 0.01 
MOBH 17 8 0 0.01 
MOBP 582 27 12 1 
MOBQ 92 2 0 0.0001 
MOBV 20 3 0 0.01 
Total 939 96 62 - 

4 Discussion 

The aim of this work was to represent plasmids as word embeddings and to perform 
MOB typing using the word embeddings. Asgari and Mofrad [18] were able to classify 
proteins using word embeddings. However, the method has never been applied to whole 
plasmids. As could be shown in this work, the word embeddings of entire plasmids can 
be used to assign the correct MOB types to these plasmids. Based on the available data, 
MOB typing using SVM seems to be the most successful approach. On the other side, 
it is possible that with more plasmid sequences present, an approach based on a neural 
network outperforms the SVM.  
By means of the t-SNE of the word embeddings, it became clear that the word embed-
dings represent an up to now not identified structure found in plasmids. The position 
on the Y-axis could correlate with the length of the plasmids. However, the factor that 
influenced the position on the X-axis could not be identified. The reconstruction of the 
plasmid typing, where only the word embeddings of the entire amino acid sequences 
were used, was functional. In the data set, the accuracy of the test data set was 85.9 %, 
even though the whole plasmid sequences were only represented by a vector of 1000 
entries. Nevertheless, the important factors to assign a MOB type seem to be precisely 
represented in the word embeddings. As the current version of the SVM was only 
trained on the known MOB types, one of the currently included MOB type is assigned 
to each plasmid, since the SVM does not know an unknown type. Nevertheless the 
MOB type could be set for 62 plasmids, which were before not assigned to any MOB 
type. These results were then confirmed with a BLAST search.  



10 

The classification of the word embeddings is currently based on the biological ap-
proach of MOB typing. As long as it is not clear for the already used biological method, 
which proteins have to be used as queries to get the best results or how many different 
MOB types exist, the word embedding classification cannot be improved. However, as 
soon as more biological information about MOB types is available, reconstructing typ-
ing with word embeddings offers an interesting alternative. The model only needs to be 
trained once and can then readily be used. An assignment to a MOB type only takes a 
fraction of a second and does not require any time-consuming BLAST analysis. 

For the next steps it would be conceivable to create a new data set of plasmids. The 
GenBank database at NCBI continuously includes more plasmids from genome se-
quencing projects and probably contains a more balanced representation of all plasmid 
types than at the creation of the used dataset by Orlek et al. [10]. Furthermore, the 
scripts can be optimized to improve performance. Further tuning of the hyperparame-
ters of the SVM will lead to even better results in the future. It is also conceivable that 
the MOB typing by word embeddings can be used to establish previously unknown 
MOB types. As shown in this paper, machine learning methods offer interesting alter-
natives for conventional bioinformatics approaches and will certainly make their way 
into biological research soon. 
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