417 research outputs found

    Research in the design of high-performance reconfigurable systems

    Get PDF
    The initial control and programming philosophies of the RELAPSE are discussed. A block diagram showing the relationship of the Arithmetic Units (composed of Stages and Bit Processors), to the Functional Units, and other components of the RELAPSE is used to guide this discussion. The latest version of the Bit Processor design is presented. Included is a detailed discussion of the Bit Processor's new scratch pad memory component. The section also clarifies the usage of the Bit Processor's processing registers, and Input/Output functions. The final design phase of the Arithmetic Unit is underway by a study of the Proposed IEEE Floating Point Standard. The decisions on conformation to this standard will be used as inputs into the finalization of the designs of the Bit Processor, Stage, and Arithmetic Units of the RELAPSE

    The Hippocampus is Preferentially Associated with Memory for Spatial Context

    Get PDF
    The existence of a functional-anatomic dissociation for retrieving item versus contextual information within subregions of the medial temporal lobe (MTL) is currently under debate. We used a spatial source memory paradigm during event-related functional magnetic resonance imaging to investigate this issue. At study, abstract shapes were presented to the left or right of fixation. During test, old and new shapes were presented at fixation. Participants responded whether each shape had been previously presented on the “left,” the “right,” or was “new.” Activity associated with contextual memory (i.e., source memory) was isolated by contrasting accurate versus inaccurate memory for spatial location. Item-memory-related activity was isolated by contrasting accurate item recognition without contextual memory with forgotten items. Source memory was associated with activity in the hippocampus and parahippocampal cortex. Although item memory was not associated with unique MTL activity at our original threshold, a region-of-interest (ROI) analysis revealed item-memory-related activity in the perirhinal cortex. Furthermore, a functional-anatomic dissociation within the parietal cortex for retrieving item and contextual information was not found in any of three ROIs. These results support the hypothesis that specific subregions in the MTL are associated with item memory and memory for context

    Research in the design of high-performance reconfigurable systems

    Get PDF
    An initial design for the Bit Processor (BP) referred to in prior reports as the Processing Element or PE has been completed. Eight BP's, together with their supporting random-access memory, a 64 k x 9 ROM to perform addition, routing logic, and some additional logic, constitute the components of a single stage. An initial stage design is given. Stages may be combined to perform high-speed fixed or floating point arithmetic. Stages can be configured into a range of arithmetic modules that includes bit-serial one or two-dimensional arrays; one or two dimensional arrays fixed or floating point processors; and specialized uniprocessors, such as long-word arithmetic units. One to eight BP's represent a likely initial chip level. The Stage would then correspond to a first-level pluggable module. As both this project and VLSI CAD/CAM progress, however, it is expected that the chip level would migrate upward to the stage and, perhaps, ultimately the box level. The BP RAM, consisting of two banks, holds only operands and indices. Programs are at the box (high-level function) and system level. At the system level initial effort has been concentrated on specifying the tools needed to evaluate design alternatives

    Upgrading from Gaussian Processes to Student's-T Processes

    Full text link
    Gaussian process priors are commonly used in aerospace design for performing Bayesian optimization. Nonetheless, Gaussian processes suffer two significant drawbacks: outliers are a priori assumed unlikely, and the posterior variance conditioned on observed data depends only on the locations of those data, not the associated sample values. Student's-T processes are a generalization of Gaussian processes, founded on the Student's-T distribution instead of the Gaussian distribution. Student's-T processes maintain the primary advantages of Gaussian processes (kernel function, analytic update rule) with additional benefits beyond Gaussian processes. The Student's-T distribution has higher Kurtosis than a Gaussian distribution and so outliers are much more likely, and the posterior variance increases or decreases depending on the variance of observed data sample values. Here, we describe Student's-T processes, and discuss their advantages in the context of aerospace optimization. We show how to construct a Student's-T process using a kernel function and how to update the process given new samples. We provide a clear derivation of optimization-relevant quantities such as expected improvement, and contrast with the related computations for Gaussian processes. Finally, we compare the performance of Student's-T processes against Gaussian process on canonical test problems in Bayesian optimization, and apply the Student's-T process to the optimization of an aerostructural design problem.Comment: 2018 AIAA Non-Deterministic Approaches Conferenc

    An analysis of signal detection and threshold models of source memory.

    Get PDF

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor
    • …
    corecore