
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19840026886 2020-03-20T21:30:12+00:00Z

1

+s

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT UR»ANA-CIIAMPAIGN
k

URBANA, ILLINOIS 61801

(NASA —CE.-173998) RESEARCH IN THE DESIGN OF 	 N84-34957
HIGH — PELFORMANCE RECOHFIGURABLL SYSTEMS
semiannual Status Report, 1 Apr. — 3U Sep.
1984 (Illinois Unix.) 33 p HC A03/M.F A01 	 Uuola:,

CSC.L 0913 G:3/60 23192
T	 TITLE

Research in the Design of High-Performance

ReconGgurable Systems

Second

Semiannual Status .Report

April 1, 1984--September 30, 1984

NASA Grant # NAG 5-377

r '^"	 l
Project Personnel

cr
Graduate Research Assistant	 `^^`^►̂ . r ►

Scott D. McEwan 0
Andrew J. Spry

Principal Investigator

F

t

r^ _4

^^ 4

k

D. L. Slotnick

i

Table of Contents

r

At

1. Introduction	 and	 Summary000.................. 1

2. Initial Bit Processor	 (BP)	 Description 3

.3. Initial	 Stage Description..Otto 9

3.1	 General Description of 	 the Stage....,...... o 9

3.2	 Functional Description of the StageOoo 0.. 11

3.2.1	 Data	 Busses.... 11

3.2.2	 General Purpose Registers 	 (RO - R3)o.. o........ 11

3.2.3	 Mask	 Register oo. 11

3.2.4	 ADD ROM and Carry 	 Signals 12

3.2.5	 Routing	 Logico............too 12

3.2.6	 Zero and Bit Wise Equivalence Detection............ 13

3.3	 Long Word	 Logic Operations 13

3.4	 Fixed	 Point	 Arithmetic 14

3.4.1	 Single Stage Fixed Point Arithmetic 14

3.4.2	 Multi-Stage Fixed Point Arithmetic.... 	 17

3.5	 (Normalized)	 Floating Point Arithmetic 18

3.5.1	 Floating	 Point Formats........o18

3.5.2	 Floating Point Arithmetic......	 18

4. System Level - The Extended (Array) Simulator Generator........ 21

4.1	 Elements	 of	 the ASG	 System 22

4.2	 Building	 a	 Simulator 23

5. Current	 Objectives..........	too 25

5.1	 Bit	 Processor	 Levelo......... 25

5.2	 Stage	 Level...... 0 .. 25

5.3	 System	 Level I.............. 26

6. Appendix:	 ASG Subroutine Libraries..	 28

t

k!
k

r,	 ^a

Research in the Dcaign of High-Performance

I

Reconf gurable Systema

1. Introduction and Summary.

An initial design for the "Bit Processor" (BP) referred to in prior reports as the

Processing Element or PC has been completed. It is described in Section 2. Eight BP's,

together with their supporting random-access memory, a 64 k x 9 ROM to perform

addition, routing logic, and some additional logic, constitute the components of a single

"Stage". The Stage was previously referred to, simply, as the "Basic Component", An

initial Stage design is given in Section 3. In that section, we demonstrate how Stages

may be combined to perform high-speed fixed or boating point arithmetic. Stages can

be configured into a range of arithmetic modules that includes bit-serial one or two-

dimensional arrays; one or two dimensional arrays of fixed or boating point processors;

and specialized uniprocessors, such as long-word arithmetic units.

One to eight BP's represent a likely initial chip level. The Stage would then

correspond to a first-level pluggable module. As both this project and VLSI

CAD/CAM progress, however, it is expected that the chip level would migrate upward

to the Stage and, perhaps, ultimately the box level. Our design effort will do

everything possible to facilitate this transition. The BP RAM, consisting of two banks,

holds only operands and indices. Programs are at the box (high-level function) and

system level.

At the system level initial effort has been concentrated on specifying the tools

needed to evaluate design alternatives. It appears that the array simulator generator

developed and used extensively on the MPP program can be readily extended to handle

^M

r
t

1

}

V I

2	 '1

our non-homogeneous system design. Section 4 briefly describes the ASG and indicates

its intended use. We have not as yet determined what design and simulation tools will

be needed at the box level. Section b is A detailed statement of our research plans at

the IMP, Stage, and systcm levels.

r.	 A

'	 1

may ._. ^.

i

i;

ti

V

2. Initial Bit Processor (DP) Description.

The initial design of the Bit Processor, hereafter referred to simply as a BP, was

guided by the followir? objectives. First, the BP was to be capable of stand alone

operation in the bit serial vertical mode, Second, the BP was to be capable of

operation in parallel with other BP's and supporting hardware in horizontal mode',

Third, the BP was to have a dual input bus and separate output bus to allow two

separate banks of memory and a two addres^ assembly language.

As an initial design stage the MPP's processing element (PE) was chosen as the

basis for the BP because of its excellent bit serial processing ability. However, there are

some notable differences in the PE's capabilities and the BP's design objectives. First,

the PE has its routing logic directly associated with each PE. The BP's routing logic

has been migrated to the next level of the design hierarchy to allow for

microprogramm able routing logic that can be configured for various horizontal and 	 i
c

vertical mode operations. Second, the PE has a separate register for I/O of bit planes.

The means of I/O from the L buffer, described in the prior report, to the BP processor

memories has not yet been addressed. As a result, at this stage of the design the BP

has no register dedicated to the I/O task, Third, the PE was not designed to operate
a	 I

in a horizontal mode. Although some of the functions needed for horizontal mode

operation could be provided by the PE using software emulation, the BP will be

designed to provide for coupling into a hardware horizontal mode component called a

"Stage". Fourth, the multiple input and separate output busses proposed for the BP

will enhance the BP's bit processing capability when compared to the MPP's PE. With

these objectives and differences in mind the design of the BP was started. The 	 1-^

resulting BP design is given in Figure 1, which will be referred to implicitly in much of

V

t

1

f

a
x

n

F

Figure 1: Bit Processor (BP).

al

a

t	 t

6
	

M ,^

the following discussion,

The entire range of vertical mode operations provided by the MPP's PC has been

retained in the BP, (Note; to distinguish the BP and Stage registers and busses of the

same name all BP registers and busses will be given lower case names,) Individual BPS

can be masked out of an operation by loading the m (mask) register with local data,

Each BP contains a single bit sum carry adder which receives its input from the r2, r3,

and a (carry) registers and sends its outputs to the rl, and c registers, A variable

length shift register, referred to as a q (queue) register, connects the r2 and rl registers

as the head and tail of a 4 to la bit length queue. (A major difference between the

BP's q register and the PC's shift register is that the q register will probably be smaller

than the PC's shift register because long word operation will be performed more

efficiently in horizontal mode.) The r3 register can be used to form any of the 16 bit-

level two variable logic functions, Register r3 is also used as the source and destination

for the routing logic, The equivalence function of the ruask register and r3 (r3 a m) is

also provided. Thus, there is full a full functional correspondence between the BP's

registers and the PC's registers as shown in Table 1.

BP and PE Register Correspondence.

BP register PC register

c C
M G
r3 P

r2 A

rl B

rl No analog
Shift Register

No analog S

Table 1i Correspondence of bit processing registers.

0
a

t

,

a
e

In addition to the above capabilities, which were also provided by the MPP's P1,

the following additional capabilities are provided by the BP. The BP has three busses.

Two busses (a and b) are used for independent input from various sources, including

two separate memory banks, and the L buffer. The other bus (o) is used for output to

various destinations, including the memory banks, the sum-or tree, and the input

busses. The registers r0 - r3 and M can be loaded from either of the input busses,

The registers r0 - r3 and c, and the r3 - m function result can be put onto the output

bus. The four registers r0 - r3 will be referred to as general purpose registers because

of their equivalent load and read characteristics. Since the output bus can be linked to

either of the input busses the capability is provided for register to register transfers at

the same time as input from one memory. Various input and output points to and

from the individual general purpose registers (r0 - r3), the mask register (m), and the

busses are provided to enhance horizontal mode operation. These BP entry and exit

points, shown in Figure I as numbered circles, are listed in Table 2. Many of these

additional capabilities have been provided to enhance the BP for its use in the

horizontal mode Stage described in detail in the next section.

Although not a part of the BP itself, the memory structure associated with the BP

also provides additional power. As stated in the prior report, two banks of memory

were to be provided for the BP. Since on-chip address decoding is furnished in 1 X N

configurations for all memory sizes N, there is no reason to preclude vertical mode BP

local memory indexing. Potential uses include the skew-storage of matrices, which

permits rows or columns of a matrix stored in an array to be accessed without

remapping memory. The time spent on the index add would thus generally be more

than recovered. Index sets corresponding to desired row or column sequences can be

c

i

a

{

A^
fi	

y

,

I

d

F

y	 .

7

4

stored at some sequence of Axed locations in BP memory,
e

In summary, the PB design provides at least equivalent power to the MPP's P1

for -,nord lengths shorter than the length of its q register, The addition of the general 	 '+

purpose registers (ro - r3), the multiple bus structure, and the locally indexable	 r'

9
	 multiple memories provide additional flexibility and power for the BP in vertical mode. 	

i

In addition the multiple bus structure, the multiple locally indexable memories, and the

general purpose registers will allow a two address assembly language to be used for

programming the BP in both horizontal and vertical mode. Since the BP is designed to

be coupled into a horizontal mode the processor is significantly more powerful than the

MPP's PC in horizontal mode operation.

•	 Y.a.r`+-.rte. -^^'f' 	 ^

ha Worp

URIGI AL, PPG' W
OF POOR QUALITY

^ a+

8

If

Input and Output Pointe.

Figure 1 1/0 Number Bit is To or From

1 From bit i of L buffer

2 From ADD ROM sum (1 bit

3 To Sum-or tree

4 To next lower bit of 16 bit Stage
level product register for horizontal
mode multiplication

5 To next lower bit of 16 bit Stage
level product register for horizontal
mode multiplication

6 To high order address of ADD ROM

7 To low order address of ADD ROM

8 To routing logic

9 To zero detect logic
10 From ADD ROM sum (1 bit)

11 From next higher bit of 14 bit stage
level product register for horizontal
mode multiplication

12

a

From next higher bit of 16 bit stage
level product register for horizontal
mode multiplication

13 From ADD ROM sum (1 bit

14 From ADD ROM sum (1 bit)

15 From routing logic

16 Stage l evel mask bit

17 Currently unused

^I

r

t
l	 '

Table 2c Bit Processor Input and Output Points.

#	
Y

y
A

f^

n

3. Initial Stage Description.

3.1. General Description of the Stage.

The Stage, previously referred to as the "Basic Compor}-nt", can be considered

the atomic unit of the horizontal mode of operation. As an autonomous unit it is

capable of all (8 bit) fixed point arithmetic and logic operations. The Stage is designed

to be coupled into a long horizontal word unit capable of both fixed and floating point

arithmetic as well as long word bit wise logic operations. An array of Stages coupled

into long word processors will still be capable of routing in the direction perpendicular

to the word. This will allow vectrars of long word processors to be produced. It will

also be possible to set up two-dimensional arrays of long word processors.

The block structure of a single Stage is shown in figure 2. The heart of each

Stage is a set of eight BAs, The BP's registers (except the c register) are either literally

connected into, or function as, horizontal registers. Each stage has micr,-

programmable routing logic which will allow transfer of data to neighboring BPs,

Stages, and words via the R3 register. A 64K X 0 ROM is provided to perform 2's

complement fixed point addition. A stage level carry propagate and generate are

produced from the ROM's 8 bit sum and carry output.. A stage level zero detect and

equivalence function are provided for the R3 register, finally, Stage level masking is

provided by distributing a mask signal into each BP's mask register. The Stage

configuration shown in figure 2 is an interim design. A number of questions

concerning Stage level local memory indexing, fixed point multiplication and division,

and floating point operation will have to be addressed prior to the final design of the

Stage,

4

I

Ey

r

^r

#	 }

IN a c It

10

.M

AD D ROM
s

^^lddra S,
1	 Y"	 Low 4y^•

000	

690

a

r

4

a

Front	 -----i 1

^^ftl'r

R	 ..

0A^,^ Ai ^,L	 ^',4 tIH AL	 ('	 .: Ail AL	 ^^^ AN ATE
i

SC k---Zq0	 r ^,:^—#X^ D Pb Ids	 (----f Ro (^ Pr R 	 ao j3 Po P
i	 f

nr^	 (r51^"-- 	 Sum

L r

.i,...

Carry propagate
H3 To R

	

	 arrd Ge-,erase
E urvn It o f er

hero Ca ac'C	
Ro^^	

U.0 din$	 ou r"^	 a 0'4C't
,w'<d

O	

^	
OQ31p^^is^^e^s	 • ,	 ,.Loo m 	,

t

Figure 2: Block Diagram of a Stage.
s

.' r 'Y •• ;yr Nar..7#^^ik 	 .	 ,..ii,"ni, r	 .'.^.•^ .. 	 ^, ^—..w^ f.

a

,	 .

11

3,2. Functional Description of the Stage.

3,2,1, Data Busses. The Stage has three 8 bit data busses, These busses consist of

the three single bit BP busses operated in parallel (see Figure 1.) and are referred to as

the At By and O busses. The A and B busses can be loaded with a single byte from

the I,-buffer, from the ADD ROM's sum, from the O bus, or from memory (A memory

on A bus, B memory on B bus). The O bus can be sent to the A or B busses, the A or

B memory, or to the sum or tree.

3.2.2. General Purpose Registers (RO - R3). In horizontal mode the 8 bit general

purpose registers consist of the BP's 1 bit registers (r0 - r3) operated in parallel. They

can all be used as an operand source for stage level addition. For the logic operations,

multiplication, and division the registers have specific functions. The R3 register is

used to	 all bit wise logic functions. The RO and R1 register together with a

stage bit register (SC in Figure 2) are used as a 17 bit shift register for

accumulating the product for 8 bit multiplication. The R1 and R2 registers function

as the tail and head of the 8 bit wide Q register used in multi stage multiplication. In

addition to these single Stage horizontal registers, the R3 register together with the

routing logic can be used as a multi-Stage long word shift register,

3.2.3. Mask Register. The Stage-level mask register M consists of the 8 BP mask

registers (m) operated in parallel. For a Stage level mask to occur a single mask bit

input to the stage is distributed to the m registers of each BP, This allows sections of

long words, or entire words, to be masked out of operations. This capability is useful

in exception processing and floating point arithmetic.

0

0

r
i

F

4

l	 i
{

I'

IN

AW -Mr

0

.

12

3.2.1. ADD ROM and Carry Signals. Stage level addition is performed by using two

addends stored in the genGr.zl purpose registers to address a 04K X fl ROM containing

tile, 2's complement sums of the address bytes. Using this table lookup addition allows

high speed Stage level arithmetic. To speed up multi-Stage arithmetic a Stage level

carry propagate and generate are produced for use in carry look ahead logic at the

board level. T:.e carry propagate is the logical AND of the sum bits from the ROM,

while the carry generate is the carry output from the ROM,

3.2.51. Routing Logic. Microprogram in We routing logic is prr, vided at the Stage level.

This logic is used in both the vertical and horizontal modes to provide communication

paths between the BPs, The routing logic should provide for rich connectivity in two

dimensions for the vertical mode of operation. In the horizontal mode of operation the

routing logic should provide two levels of function, Long words should be connected by

a nearest neighbor connection in the direction perpendicular to the word to provide for

a linear array (or vector) of long words. The connections along the long words

themselves should lie rich enough to allow logical and arithmetic shift operations, fast

floating point mantissa alignment operations, sign woetision, and special guard bit

handling in floating point operations. The complete function of the routing logic will

depend on the range of connections needed to provide both veritcal mode BP

communications and efficient horizontal mode Stage level communications for fixed and

floating point arithmetic. The design of the routing logic will be an area of research in

the next period,

IN

.	 i
x

13

3.2.6. Zero and Hit Wise Equivalence Detection. The contents of the R3 register can

be checked for a zero content3 at the Stage level. This operation will be useful in

controlling boating point alignment shifts and in long 'word logic operations. In

addition a Stage level output is available for checking on the result of a bit wise

equivalence operation. These outputs can be cascaded to provide for long word zero

and bit wise equivalence detection,

3.3. Long Word Logic Operations.

The Stage's R3 register is the primary logic engine for long word operation. As

stated above a Stage level zero detect is provided for the contents of the R3 register.

These zero detects can be cascaded into a long word zero detect, In addition the Stage

level equivalence functions can be cascaded to form a long word equivalence function.

Bit wise logic operations can be carried out on the long word contents of the R3

register and another value, The second operand of the logic operation is any value

that can be loaded into the R3 register from the data busses or routing logic. The 16

bit wise logic functions of two 'variables are provided by the BP's R3 load logic. In

addition to providing the bit wise logic operations the R3 register can also be used as a

long word shift register. By configuring the routing logic for an end around shift

versus, the shifting on of a zero or propagating the sign, bit, the long word shift register

R3 is capable of both logic and arithmetic shift operation. These desirable shift

abilities will be used as an input in determining the capabilities of the routing logic,

As a first pass in timing for the long word logic operations a single operation

machine cycle will be used as a unit of measure. All bit wise logic operations can be

performed in one . machine cycle. With a two address assembly language any logic

operation of two variables can be specified as a single statement of the form:

r

*j

14

LOGICOP OP11OP2

Such a logic operation can be performed in at most 3 cycles, This maximum time

arises if the first operand is in any other location than the R3 register. In this case the

following micro operations would be used to produce the desired result:

R3 -- MCM(OP1)

R3 [R3] LOGICOP MEM[OP2]

MCM(OPI) —R3

As an optimization, statements where the first operand is the R3 register should be

assembled into a.. one machine cycle operation.

The time required for shift operations will depend on the power of the routing

logic connections, For a full power of two network (single cycle routes at distances

at2 ± 1, 	 ,	 3t2,) a shift of distance D could be performed in LOC,(D). With a

partial power of two network, the times for a shift of D will of course be greater but

will still be an improvement over a distance one shift time of D . The desired timing of

the shift operations will be used as an input in determining the final horizontal mode

routing logic.

3.4. Fixed Point Arithmetic.

3.4.1. Single Stage Fixed Point Arithmetic. Fixed point arithmetic can be logically

divided into single and multi-Stage operations. At the single Stage level it is reasonable

to talk of single and double precision addition and subtraction as well as single

precision multiplication and division. The hardware shown in Figure 2 is capable of

the 8 bit single precision fixed point addition and subtract.-m. 	 '•l itional hardware

b

I

H	 n

id

16

will be needed for multiple precision operations and for multiplication and division,

For a first pass estimate of the times required for single precision addition and

subtraction we will again use the machine cycle as the unit of measure. Consider the

addition of two numbers stored in different memory banks. Since the ADD ROM

provides two's complement addition in one machine cycle the operation can be

performed in three cycles by the following micro operations.

R2 MEM(OP1]; R3 MEM[OP2]

SC,R2 ROM(R2,R3]

MEM(OP1] ,- R2

Consider the subtraction of two numbers stored in different memory banks, This

operation can be performed in four cycles by the following micro operations.

R2 NIEit4(017 1J; R3 ,- MEM]OP2]; SC « 1

SC,R3 - RONf (R3,SC]

SC,R2 ROM(R2,R3]

MENI[OP1] • R2

Multiple precision operations will require additional cycles to propagate the carries

across the bytes of the words, but in general subtraction will require one additional

addition (of the same precision) to generate the 2's complement. Overflow detection

hardware will be required at the Stage level. This hardware should work for all

precisions desired at the Stage level.

Two possible schemes for a hardware Stage-level single precision multiplication are

given in Figure 3. Figure 3 (a) shows how the Stage would be configured for an

F

(

y

E

I

y

!il

Lc

IsC	 F R061	 Rol ROO	 4	 Rt I L R s

IR?.	 AtP7 A4	 i Ao

R^ r 	A	 s;

ADD
Rom

R^	 A,^ !6 y Ic X 9)	
c

rS^ ^13o	 S^II }^'

(a) Iterative Multiplication.

00

16

r

r

Co., 1,01

E	 ^.' o p
c..^ ^ C

^^ r

Cuuw yen
4

r

F	 /

q

r	
,y

i

(b) ROM Lookup Multiplication.
5

V

Figure	 Possible Multiplication Hardware Configurations.

j

•

s

17

iterative multiply, Such an operation would require 1 cycle to load the operands into

the registers, 10 cycles to ADD and shift the product into the R0, RI product register,

and 2 cycles to store the result in memory. This gives a total of 19 cycles for Stage

level multiplication. Figure 3 (b) shows how the stage would be configured for a ROM

multiplication table lookup, Such an operation will require 1 cycle to load the

operands into the registers, 1 cycle to perform the ROM lookup, and 2 cycles to store

the result in memory. This gives a total of 4 cycles for Stage level multiplication (only

one cycle longer than the time required for single precision addition). The various cost,

and space tradeoffs of these and various other multiplication schemes will be considered

before a final choice is made for the multiplication hardware.

3.4.2. Multi-Stage Fixed Point Arithmetic. Multi-Stage addition and subtraction are

a natural extension of the Stage level single precision operations. The Stage produces a

carry generate and propagate output. A simple ripple carry scheme could be used to
v

extend the addition operation but this would require one carry propagate step per

stage. For a 64 bit numbers this would result in a 10 cycle add time. Using a carry

look ahead at the board level (it is assumed that 8 stages will fit on a board) only one

cycle will be needed to correct for the carry. For the 64 bit number this scheme will 	 I

result in a 4 cycle add time, For longer words the carries can be rippled from board to

board with the increase in addition times of only one cycle per board. Thus the time

required for long word addition is given by: R+2 where R is the number of 64 bit

boards.

Multi-Stage multiplication will require the generation of single Stage partial

products. These partial products will have to be stored and shifted around while the

summation is being performed. The temporary storage of the partial products and

+	 .

19

is

partial product sums can be done by using the Q register. The shift operations will

require Stage length shifts of the R3 register. Various algorithms for this operation will

be compared for efficiency,

3.5. (Normalized) Floating Point Arithmetic. 	 i

r"

3.5.1. Floating Point Formate. The choice of a 2's complement ADD ROM has some

interesting implications for the choice of the floating point representation of numbers.

First, the exponent must be in 2's complemL,A instead of the more common excess

notation. Second, the sign bits (implicit because of the choice of 2's complement) must

be the high order bit of the mantissa and exponent. Third, there can be no stage level

floating point operations because the ROM is set up as a fixed point 2's complement

sum. Fourth, the choice of ROM lookup addition and the design of the stage require

that the exponent and mantissa be multiples of the stage length (currently 8). A

proposed floating point format is given in Figure 4.

3.5.2. Floating Point Arithmetic. The microprog^,ammable routing logic will be used

extensively to provide fast floating point operations. As an example consider the

addition of two floating point numbers stored in different memory banks. The
I

configurations of the Stage level masks and routing logic for this operation for 32 bit

floating point arithmetic are given in Figure 5. The first step in floating point addition

is to compare exponents. This operation is done with the word configured as shown in

Figure 5 (a). The exponents are loaded from memory, a subtraction is performed, and

the difference S is put in R3. This sub-operation will require 5 machine cycles. The

second step is to align the binary points of the mantissas. This operation is done with

the configuration of Figure 5 (b). The bits shifted off the exponent are used to mask

l 6. 6^i expo»ehf 	 y8 —bi nnnA'4Ifr4
19
	

It

t impl^es+ si^M 6;f	 ^imPln^' s^,N 6,'t Vero	 14141c,
6^^t 614-

's eo.►, Pleyr,a-A^'

e	a	 Figure 4: 64 Bit Floating Point Format.

IV► tM

SUS	 -----,
--- R3 e

	

'I	 (a) Exponent Comparison Step.
1

„ f

k-

O
MI	 MI	 MI

1 3e	 R3	 (Z 3	 R3

S l„- t

(b) Mantissa Alignment Step.

OV,er410w

L= 	 LJ	 IN 11 L1
Ana,=^

(c) RenormalIzation Step.

Figure 5: Configurations for 32 bit Floating Point Addition.

.V

,r

r	 I	 {

20

the shift of the mantissa, The Stage level zero detects can be used to stop the shifting

operation. In any case the shift can be stopped after the 5th bit of the 8 (see Figure 5

(a)) has been shifted because the significant digits will have been shifted off the

mantissa, In is worthy to note that the shift preserves the sign of the mantissa and	 i

provides for a "sticky bit" as a guard digit, The third step is the mantissa addition

itself. The result of this operation will be placed in R3. Register to register addition of

the 24 bit mantissas will require 3 cycles. The fourth step is the renormalization of the

mantissa. This operation is performed using the coufiguration given in Figure 5 (c).

Notice that the overflow bit is used to mask the words that do not require

renormalization out of the operation, This step will require 2 machine cycles for the

increment of the exponent. Finally, the result will be stored in memory. This will

require one machine cycle, Thus, 32 bit floatin g point addition can be performed in 16

machine cycles where the maximum alignment shift was required for one of the

operands.

Floating point subtraction and multiplication are similarly extensions of the fixed

point operations c n segments of the word. The stage level masking and

microprogram mable routing logic are very important in providing fast floating point
i

operations.
e

9

y

.	 s	 .

0

21

4. System Level - The Extended (Array) Simulator Generator.
s;

The Arry Simulator Generator (ASG) is a set of modern software tools built

originally for constructing simulators for bit-serial array computers such as the MPP.

A simulator created using ASG contains a complete functional emulation of the target

machine, as well as a built in debugger/user interface, Although ASG was initially

designed to simulate array machines, virtually any machine can be simulated by writing

emulators for each functional unit and using ASG routines to connect them and
1

interface with the ASG debugger, A library of routines implementing common array

operations is provided to simplify creating emulators for array units (see the Appendix),

ASG can be used to create a simulator for a proposed machine, in such a way that

variants of the simulated machine's architecture can be examined. Many hardware

parameters (such as memory depth, array dimensions, or the clock speed of any 	 k

functional unit) can be altered dynamically while the simulator is running, allowing

quick comparisons to be made between similar architectures.

An ASG simulator can be used as a powerful software development system, Code

which is developed on the simulator can be easily transported to the actual machine. A

significant amount of software was developed on an ASG MPP simulator and

subsequently ported to the MPP. The only changes necessary were due to the fact that

the simulated 11PP had a 16 by 16 array rather than the 128 by 128 array on the

MPP. The simulator gives an accurate estimate of a program's running time, as well as

a count of the number of instructions executed by each unit. If only a timing estimate

is wanted for a long runni program, the simulator can be set up so that subroutines

with known run times can be trapped and their run time added to the system clock

without bothering to execute the routines.

1	 t	 t

0

ZZ

4.1. Clements of the ASG System,

The ASG debugger is the overall controller for the simulation. Through the

debugger, the uaer has control over all components of the simulated machine, All

memory and registers can be viewed or changed; programs can be run, halted or

single-stepped; breakpoints can be set or cleared; individual emulated hardware units

can be started or halted; all or part of any unit's memory can be loaded from or saved

to a file (with corner-turning for the array unit). Certain hardware parameters can be

changed dynamically, The system clock can be read to give estimates of program

running time.

The debugger is independent of the machine emulator and requires changes or

additional code to work with a new emulator. Information about the emulated

machine can be given to the debugger by one of two methods; the emulator can place

information in the debugger symbol table during start up using an ASG subroutine

provided for this purpose, or the information can be extracted from the symbol table of

the compiled ASG simulator and placed in a file which is automatically read by the

debugger during start-up. The latter method is more flexible, but less portable, as it

requires a separate program to extract the symbol table information for each system

run on the simulator.

The multi-processing subroutine library contains routines for simulating parallel

execution of the functional units of the simulated machine. The library includes

routines for creating new processes to be run in parallel, for suspending a process for a

period of simulated time, while waiting for some event to occur, and for signaling that

an event has occured (e.g., something has been placed on a queue, data is available

from an input device, a unit has completed execution of a subroutine). These routines,

0 a#

f

,

I

V

F

23

along with a built-in scheduler, act like a virtual operating system for the simulator,

The inter-process communication library handles communication between units of

the simulated machine and between the emulator and the debugger, There are

routines for creating a descriptor for a resource held by a process, opening a channel to
o,.

a resource in another process, and reading and writing to resources,

The queue management library contains routines to create a queue, place an item

on a queue, pop an item off a queue, look at the top item of a queue, and clear a queue,

Queue elements can be any data type. A process is automatically suspended when it

attempts a queue operation that can't be done (trying to take an element off an empty

queue or place one on a full queue) and reactivates the process when the operation

becomes possible.

The I/O library handles all I/O between the simulator and the host computer's

file system. Any part of the simulated computer's memory can be read front stored

to a file. Corner-turning can be performed when loading or saving any array unit

memory.

The array operations library contains routines for a variety of bit- serial array

operations, These include: array to array memory plane moves, all 14 binary logic

operations between two planes of array memory or registers, planewifle one bit

addition, array shifts, logical or of all bits ma a plane, sum of bits in a plane. All

operations can be optionally masked with a plane of mask bits.

4.2. Building a Simulator.

In order to build a simulator using ASG, it is necessary to write an emulator for

each functional unit of the machine. The existing array operations library can be used

ffi

1
e

4

24

to]tell) write an array unit emulator. The start tip for each emulator should create

descriptors for any resources uceded in inter-process communication, and should

initialize the debugger's symbol t:.,,ble with addresses of emulator resources. Cinnlly, a

stain routine must be written to start up the different units as parallel processes and

begin multiprocessing (a routine exists that can be used as a template for this,)

As boxes are designed it is our intention that emulators will be written and added

to the system. It is our hope, that the simulation activity will closely track the design

effort,

tj

1

,

I#	 .

11R idf6i, 17

25

G. Current Objectives.

5.1. Alt Processor Level.

Logic design refinements will center around the BP register structure, The

possible roles of the BP Q register in horizontal mode (primarily, as a partial product
	 t

queue) will be examined with the objective of finalizing both its length and

connectivity, The whole question of reasonable vertical mode uses, bracketing storage

.)n:l computational efficiency, degrees of problem parallelism expected to be

encountered, and required input and output precision, will be addressed.

Routing studies will continue. Although we are now strongly inclined toward

power-of-two connectivity, in both vertical and horizontal mode, we will subject this

choice to an analysis of its consequences for vector and long-word calculation, A first

pass will be made at BP hardware layout, timing, and cost.

5.2. Stage Level.

Hardware for forming a 16 bit product from two 8 bit operands at the Stage level

will be added. No hardware is shown at the age level as yet since the means for

providing this function is still under study. Some of the alternatives being investigated l
are an iterative multiply using all four general purpose registers, or a ROM lookup.

TradeolTs between these and other methods will be investigated during the next period,

An instance of the close coupling between design considerations for the BP and

the Stage is provided by the relation between BP memory size and the size of the add

ROM in the Stage. As we indicated in Section 1, it is unquestionably useful and

technologically feasible to allow BP memory indexing on the local level. This causes

no difficulty, independent of BP memory size, in vertical mode. The ouly memory A,,,ze

r.. rs.'t 1` .^L' jt .1^e ter..-.^ ^ .^ ^	 e

1	 +	 1

l+

M M

ZA

effect is the time required for the bit-serial index add, In horizontal mode, however, an

index at the Stage (or multi-stage) level will require double (or higher) precision

utilization of the add ROM. The numerous ways to handle this difficulty, will be

examined,

Hardware for the detection and handling of overflow will be designed,

Floating	 point operation	 specification	 and	 design will continue	 including

developing	 the	 cost and	 performance	 consequences	 of the two's	 complement

representation selected.

Stage-level connectivity will be finalized with the objective of providing efficient

matrix, vector, and word (standard to long) operation.

The incorporation of Stage-level carry-generate and carry-propogate will be

studied from both the utility (primarily for carry look-ahead) and cost viewpoints.

Two "exotic" possibilities will be briefly examined; the implementation of 	 r.

asynchronous Stage long word operation, and the use of n ` Stages for n byte

multiplication/division, finally, a first pass will be made at Stage layout, timing, and

cost.

t	 j
5.3. System Level.

A principal objective will be to achieve a working extension of the (Array)

Simulator Generator. This will permit us to generate and evaluate the first set of box-

level designs. An interesting, distantly related question is the desirability of an efficient

MPP emulator mode.

It is important to note that we intend to maintain a clear division between box

designs utilized the Stage "component" and the incorporation of boxes at the system

c	 1	 t

r

27
N

`y	 level. Thus, as the advance of 'VLSI continues we c pit substitue more advanced stages

into boxes or entirely specialized box-level components, without do!ng total violence at

the system hardware and software level, 	 J

j

Finally, we will select and start the design of a set of dense, banded, and random

sparse matrix/vector boxes together with the specification of their comprehending
fi

system environment,

a

1

'y4

R

t

f

a

r	 `^

,n

.y

i

n

.

•

28

6. Appendix: ASG Subroutine Llbrarles.

Multi-processing

sp_exce (prog)

Define routine as a sub-process and set up for multi-processing.

multi task()

Start up multi-processing;

sp_ch(n)

Set bit "n" in global state.

sp_seen(n)

Ciear bit "n" in global state.

wait—for(n)

Suspend current sub-process until bit "n" in global state is set, then clear bit "n"

and resume execution.

sp slecp(n)

Suspend current sub-process for "n" clock ticks.

sp swap(user)

Replace current sub-process with "user". Usually only called by multi task().

Inter-process Communication

I_creat(name,

Create a descriptor for referencing a resource in a sub-process,

t

i,

R	 ^	 s
of ^

29	 i

I_open(name)

Open a channel to a resource in another sub-process,
a

I_write(channel,

Write to a previously opened channel.
r

I_read(channel,

Read from a channel.

Array Operations

bit_copy(dest,

Move "nplanes" planes of array from "src" to "dest".
.i

bit_logic(dest,

Perform any of the 16 binary logic operations between the planes "src" and

"dest", either masked or unmasked.
M	

f

X	 '

bit_net(dest,

Array shift "nplanes" planes "distance" pe's, using "type" to determine topology.

bit—or	
i

Find logical or of all bits in a plane.

,s
bit-sum(array)

Find sum of all bits in a plane,
i

fulladd(sum,
I

Full add of 2 planes with carry, masked or unmasked. 	 j

1

r V >

0

30

halfadd(sum,

flalf add (1 plane + carry), masked or unmasked.
r

shiftreg

Shift register operations. Shift register length is given by "code", 	 a,

Queue Management

queuesize(q, i
Set length of queue to "n".

enq(block,

Place block on queue "q".

deq(block,	 l

Remove next item from queue.

topq(q)	 r
4

Top element of queue.

dumpq(q)	 G
t

Clear queue.

Miscellaneous Operations

address(itemno,

Return pointer to "count" bytes at offset "offset" in item "itemno" .

copy Copy "length" bytes.

'r

y

_	 ^	 1

Wa:

u

ai

clear5et "len" bytes to zero,

bit_size(nrow,

Change array dimensions to "nrow" by "ncol".

bit—in

Read in and corner-turn data from a file into array memory,

bit_out(file,

Corner-turn and write out array planes to a file. 	 ,

Y

f
k

J

K

i^

p^
p

(}	
!1I

1^	 1

r

u

_	

I

"I

r

i

..	 Pte! y►'ia':r^ .^'^ •^' ^ S.. y `` ^ '^ ^	 ..

	GeneralDisclaimer.pdf
	0002A01.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf

