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The authors analyzed source memory performance with an unequal-variance signal detection theory
model and compared the findings with extant threshold (multinomial and dual-process) models. In 3
experiments, receiver operating characteristic (ROC) analyses of source discrimination revealed curvi-
linear functions, supporting the relative superiority of a continuous signal detection model when
compared with a threshold model. This result has implications for both multinomial and dual-process
models, bom of which assume linear ROCs in their description of source memory performance.

Source memory refers to memory for the context in which
information was acquired (Johnson, Hashtroudi, & Lindsay, 1993).
For example, memory for the person with whom one is conversing
or the place where one is conversing can be interpreted as source
memory. In psychological experiments, source memory is typi-
cally assessed by asking participants to determine the origin of
previously presented information, such as whether the information
was presented verbally or visually, presented by a male or a female
voice, or presented in one spatial location or another. As these
examples imply, source memory depends on memory for autobio-
graphical or episodic information. Various cognitive and neuro-
psychological findings have suggested that, to some degree, mem-
ory for source can be dissociated from item memory (see Dodson
& Shimamura, 2000; Johnson, Kounios, & Reeder, 1994; Schacter,
Harbluk, & McLachlan, 1984; Shimamura & Squire, 1987; Zara-
goza & Lane, 1994). Indeed, various models of memory suggest a
distinction that is related to differences between item and source
memory (e.g., Gardiner, 1988; Hirst, 1982; Jacoby, 1991; Johnson
et al., 1993; Mayes, Meudell, & Pickering, 1985; Tulving, 1972).

Johnson et al. (1993) developed a useful framework for the
analysis of source memory. In this "source monitoring" frame-
work, the degree to which individuals identify the source of a
memory depends, in part, on the kind of information that is
acquired and remembered. That is, one can remember various
aspects of a learning episode, such as perceptual information,
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spatial information, semantic detail, affective information, and the
cognitive operations invoked during learning. Some of these as-
pects, such as perceptual and spatial (i.e., contextual) information,
may be particularly important for making a correct source attribu-
tion. For example, remembering the particular quality of a speak-
er's voice may facilitate identifying which speaker presented some
information. The source monitoring framework provides a useful
characterization of both the features of episodic memory that are
important for the establishment of source memory and the decision
processes that are involved in the retrieval of these memories.

In another line of research, formal models have been developed
for evaluating the different processes associated with source mon-
itoring. Batchelder and Riefer (1990; Batchelder, Riefer, & Hu,
1994) have developed a multinomial modeling approach that can
be used to derive parameters associated with item memory, mem-
ory for source, and guessing biases. Various modifications of the
original Batchelder-Riefer model have been applied successfully
to address issues of source memory and related phenomenon, such
as recollective processes and response bias (see Bayen, Murnane,
& Erdfelder, 1996; Buchner, Erdfelder, Steffens, & Martensen,
1997; Dodson, Holland, & Shimamura, 1998; Dodson & Shi-
mamura, 2000; Erdfelder & Buchner, 1998). Recently Yonelinas
(1999) used the threshold recollective component of the dual-
process model (Jacoby, 1991) to describe source memory perfor-
mance. Both the Batchelder-Riefer model and dual-process model
evaluate memory for source in terms of a three-state or two-high
threshold model in which participants either (1) remember that the
information came from one source (Source A), (2) remember that
the information came from another source (Source B), or (3) do not
remember the source and guess.

Threshold models have a rich history in cognitive research (see
Banks, 1970; Snodgrass & Corwin, 1988). Thus, it is reasonable
that source memory has been considered in terms of such models.
An important advantage of this modeling approach is that it is
possible to dissociate the contributions of item memory (detection)
and memory for source (identification). Moreover, it is possible to
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study the manner in which guessing biases influence memory
performance (see Riefer, Hu, & Batchelder, 1994).

The threshold approach is not the only way to assess memory
performance. Signal detection theory offers an alternative ap-
proach that does not assume that individuals adopt a discrete
"state" of knowledge. In signal detection models, the distributions ,
of old and new items are assumed to be gaussian and extend along
a single dimension. As is well known, signal detection approaches
have been applied frequently to analyses of perceptual phenomena
(Egan, 1958; Green & Swets, 1966; for a general review of signal
detection theory, see Macmillan & Creelman, 1991). Moreover,
this approach has also been used to describe various memory
phenomena (Atkinson & Juola, 1974; Banks, 1970; Banks, 2000;
Donaldson, 1996; Ratcliff, McKoon, & Tindall, 1994; Ratcliff,
Sheu, & Gronlund, 1992; Snodgrass & Corwin, 1988; Yonelinas,
1994).

The present investigation assessed the appropriateness of signal
detection theory to source memory. That is, we examined whether
source identification can be viewed in terms of a continuous
process in the same manner by which item detection has been
construed. In addition, we compared a signal detection approach to
the threshold approach. In this way, we could evaluate the advan-
tages and disadvantages of both approaches.

Threshold Models

The Batchelder-Riefer model of source monitoring has been
described in detail elsewhere (see Batchelder & Riefer, 1990;
Bayen et al., 1996; Dodson, Prinzmetal, & Shimamura, 1998;
Dodson, Holland, et al., 1998). Thus, we only present a summary
of the model's basic tenets. In a typical source memory experi-
ment, participants acquire information from two sources, identified
as Source A and Source B. Source A and Source B items could be
words presented by a male and a female voice, respectively. At
test, participants are presented with a mixed list of Source A,
Source B, and new words. For each test item, they are asked to
make a three-choice source recognition judgment in which they
must determine whether a test item came from Source A, Source
B, or was not presented at study (i.e., a new item). As shown in
Table 1, the data set from such a source test can be summarized in
a 3 X 3 confusion matrix. The rows in Table 1 correspond with the
three types of items that were presented during test (Source A,
Source B, new items), and the columns correspond with the three
types of responses for a particular test item.

Table 1
Data Set From Multinomial Source Memory Approach

Given

Source A item
Source B item
New item

"Source A"

P("A"
p("A"
P("A"

A)
B)
New)

Participant response

"Source B"

P("B"|A)
p("B"|B)
p("B"|New)

"New"

p("New"|A)
p("New"|B)
p("New"|New)

Note. Bold items represent correct responses. "Source A" = Responding
that an item came from Source A; "Source B" = Responding that an item
came from Source B; "New" = Responding that an item was new.

The Batchelder-Riefer multinomial approach uses the confusion
matrix to derive parameters associated with item detection, source
identification, and guessing biases. The parameter space is defined
by a decision tree structure, such as that outlined in Figure 1,
which displays the memory states that are associated with respond-
ing to studied items (i.e., items from Sources A and B) and new
items. As seen in Figure 1, there are two memory parameters: (1)
item detection (D) refers to the memorial information that allows
studied words to be distinguished from new words on the test and
(2) source identification (d) refers to the memorial information
that identifies the source of studied words. Various guessing pro-
cesses influence performance when participants fail to remember
item or source information. The tree structure in Figure 1 illus-
trates the different contributions of memory and guessing param-
eters for each response category in Table 1. Most important, da

refers to the probability of recollecting an item from Source A and
db refers to the probability of recollecting an item from Source B.

Bayen et al. (1996) proposed a modified version of the model
developed by Batchelder and Riefer. In the original Batchelder-
Riefer model, source identification was viewed as a two-high
threshold process, whereas item detection was viewed as a one-
high threshold phenomenon. In the Bayen et al. (1996) modifica-
tion, source identification and item detection are both viewed as
two-high threshold processes. Specifically, the revised model adds
a parameter for the detection of new items (Dn). The tree structure
for new items shown in Figure 1 includes the Dn parameter and
thus represents the Bayen et al. (1996) modification to the original
Batchelder-Riefer model.

Because a full description of the parameters associated with the
dual-process model is covered elsewhere (Yonelinas, 1999), we
only discuss the model parameters as they relate to source memory
performance. In a source memory paradigm that consists of two
sources of approximately equal familiarity (e.g., words spoken by
either a male or a female in random order), familiarity cannot be
used for source identification. Under these conditions, the dual-
process model uses only two recollection parameters, Rt and Rp
where Rt refers to the probability of recollecting an old item and Rt

refers to the probability of identifying a new item. Yonelinas
(1999) used this reduced model, where the familiarity component
is set to zero, in three of four experiments where the process of
familiarity was not expected to influence source identification.
Like the Batchelder-Riefer model, the reduced dual-process model
assumes a two-high threshold process underlies source identifica-
tion. Therefore, when sources are of similar familiarity, fitting the
two-high threshold model to source identification data is the same
as fitting both the Batchelder-Riefer model and the dual-process
model.

Continuous Signal Detection Models and the Analysis of
Receiver Operating Characteristics

Threshold models of memory are attractive because of their
simplicity (Bernbach, 1967). Moreover, in many instances they are
sufficient for analyses of empirical data, particularly those used to
suggest qualitative changes, such as the identification of functional
dissociations between cognitive or neuropsychologicai variables.
Yet, continuous signal detection models have certain advantages,
especially in modeling finer-grain, quantitative aspects of memory
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Source A Items Source B Items New Items

Source
Responses

Source
Responses

"B"

Source
Responses

1-D,

"N"

Figure 1. Tree diagrams for the two-high threshold multinomial model, with separate trees for Source A items,
Source B items, and New items. D, = probability of detecting a Source i item as old; d-t — probability of correctly
identifying the item as originating from Source i (i refers to Source A or Source B); Dn = probability of detecting
a New item as new; a = probability of guessing that a detected item is from Source A; b = probability of
guessing an item is old; and g = probability of guessing that an undetected item is from Source A.

performance (see Drake & Hannay, 1992; Ratcliff et al., 1992;
Yonelinas, 1994).

In standard applications of signal detection theory to memory
performance, individuals are asked to make confidence ratings as
to whether a particular test word was an "old" or "new" item. For
example, old-new judgments may be obtained by asking individ-
uals to rate on a 7-point scale their confidence that a given test item
was old or new (7 = very sure it was "old"; 1 = very sure it was
"new"). From these ratings, a receiver operating characteristic
(ROC) can be obtained that characterizes the relationship between
hits and false alarms across various levels of confidence. In addi-
tion, a" can be calculated, which provides a measure of memory
strength in terms of the separability of the gaussian distributions of
old (signal) and new (noise) items. Finally, a criterion parameter
<C) can be calculated that serves as a bias measure indicating the
degree to which both old and new items are endorsed as "old."
This measure of confidence bias has been shown to be independent
of df and thus has been recommended for use in place of beta
(Snodgrass & Corwin, 1988). C has a value of zero with no bias,
is negative for lax bias, and is positive for strict bias.

Signal detection theory has also been used to analyze the un-
derlying variability of old and new items (Ratcliff et al., 1992,
1994). Often, it is assumed that the standard deviation of the old
and new distributions are equal to each other and that ROCs are
symmetrical along the diagonal. However, it is possible to evaluate
the degree to which the variability differs between the old and new
distributions. Specifically, a measure of the ratio of the standard
deviations of new (<rj and old (<ro) distributions can be obtained
by taking the z transform of the hit and false alarm rates for each
confidence rating (see Green & Swets, 1966; Macmillan & Creel-
man, 1991; Ratcliff et al , 1992). If the distributions are assumed
to be gaussian, the slope of the z-transformed ROC (zROC) rep-
resents a measure of the ratio between the new and old standard
deviations (ajaj. In practice, this ratio is typically below 1,
because the variability of old items is generally greater than the
variability of new items. Ratcliff and colleagues (Ratcliff et al.,
1992, 1994) have shown that this ratio hovers about .8 across
various manipulations of memory strength. This finding poses

difficulty for a variety of global memory models, which often
predict changes in the variability of old and new distributions as a
function of memory strength (Gillund & Shiffrin, 1984; Hintzman,
1986) or predict equal variability of old and new distributions
(Murdock, 1982). Recently, Glanzer et al. (1999b) have shown the
standard deviation ratio is not constant.

When the signal detection approach is applied to source memory
performance, it is assumed that memory strength for source is a
continuous, unidimensional variable. Source memory strength can
be construed as the degree to which the distribution of Source A
and Source B items can be discriminated from each other. In our
application of signal detection methodology to source memory
performance, participants make three confidence ratings for each
test item—one rating for item familiarity (old-new recognition)
and two ratings for source memory. For one source rating, indi-
viduals rate their confidence that a test item came from Source A
(7 = very sure it came from Source A; 1 = not sure it came from
Source A). In the second source rating, individuals rate their
confidence that a test item came from Source B (7 = very sure it
came from Source B; 1 = not sure it came from Source B).

It is possible to represent the two source ratings as a single
dimension such that one endpoint represents the highest confi-
dence that an item came from Source A and the other endpoint
represents the highest confidence that an item came from Source
B. For example, the highest rating for an item coming from Source
A would be those items given a 7 rating on the "Source A'*
judgment and a 1 rating on the "Source B" judgment. The second
highest ranking for items judged as coming from Source A would
be the combined set of items given a 7 rating on the "Source A"
judgment and a 2 rating of the "Source B" judgment plus those
items given a 6 rating on the "Source A" judgment and a 1 rating
on the "Source B" judgment. Figure 2 illustrates how the two
source judgments for a particular item can be converted into a
single 13-point scale. Items with equivocal or no source memory
discrimination are those items that are rated equally on both source
ratings. Such items are scored at the midpoint of the scale (i.e., a
rating of 7 on the 13-point scale).
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Raw
"Source A"
Ratings

Source A Items
Raw "Source B" Ratings

1 2 3 4 5 6 7
1
2
3
4
5
6
7

2
3
4
5
6
7
8

3
4
5
6
7
8
9

4
5
6
7
S
9
10

5
6
7
8
9
10
11

6
7
8
9
10
11
12

7
8
9
10
11
12
13

Sum diagonals
i

Source A Items
<— Judge "Source A" Judge "Source B"
3 4 5 67 8 9 10 11 12 13

I I I

Repeat for each "Old/New" rating
I

Source A Items
<- Judge "Source A" Judge "Source B"

7
6
b
4
3
2
1

i—
i 2 3 4 b 6 7 8 y 10 11 12 13

Repeat for Source B and New Items

Figure 2. The top 7 X 7 matrix refers to source judgments to Source A items for a single "old-new" ("O/N")
confidence rating (from 1-7). This matrix can be converted into the middle one-dimensional matrix by summing
all the bins containing the same number. The middle matrix is a single row in the bottom matrix, where the each
row corresponds to each "old-new" confidence rating.

ROC curves for source memory can be drawn from the 13-point
rating scale. For example, the proportion of Source A items given
a rating of 1 on the 13-point scale (collapsed across "old-new"
judgments) is plotted against the proportion of Source B items
given that same rating. Cumulative proportions are calculated by
including subsequent rating bins and obtaining proportions for
both Source A and Source B items. Thus, in the view of standard
signal detection methods, the ROC derived from source judgments
represents the degree to which individuals can discriminate be-
tween Source A items and Source B items.

The analysis of ROCs for source identification permits a test of
the underlying structure of source information. To the extent that
memory for source is represented as a continuous gaussian distri-
bution of source knowledge—ranging from strong memory for a
Source A item to no memory for that item, or ranging from strong
memory for a Source B item to no memory for that item—ROCs
should conform to standard curvilinear functions such as those
obtained in analyses of item detection. To the extent that source
identification represents a discrete, two-high threshold process in
which individuals are in one of three states—know the item is
from Source A, know the item is from Source B, or have no

knowledge of source—then ROCs should be linear. Figure 3
illustrates representative ROCs for the two contrasting models of
memory for source.

In our experiments, source memory was assessed by asking
participants to judge aspects of a learning episode in which
words were presented. In three experiments, words were pre-
sented by a male voice or a female voice. By obtaining "old-
new," "Source A," and "Source B" ratings, we analyzed ROCs
to determine whether source memory should be viewed as a
two-high threshold process or whether it is better viewed as a
continuous process.

Experiment 1

The primary purpose of this study was to assess source memory
by applying signal detection theory. Thus, we obtained both old/
new and source judgments at various levels of confidence and used
these data to obtain ROCs for item memory and source identifi-
cation. Source memory was manipulated by presenting words in
either a male voice or a female voice.
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ROC Function for
Continuous Source Model

ROC Function for
Two-High Threshold Source Model

p("Source A"/Source B item) pC'Source AVSource B Item)

Figure 3. The figure on the left illustrates a curvilinear receiver operating characteristic (ROC) for source
identification that is generated from the unequal variance signal detection theory model. The figure on the right
illustrates a linear ROC for source identification that is generated from the two-high threshold model.

Method

Participants. Twenty-four undergraduates at the University of Califor-
nia, Berkeley, were each paid $8 for their participation.

Materials. The stimulus set consisted of 120 five-letter nouns. From
this set, three 40-word lists were produced, each with an average word
frequency of 82.5 (KuCera & Francis, 1967). For each word set, the words
were recorded once by a male voice and once by a female voice. The lists
were used to construct the three stimulus types—male words, female
words, or new words. The words were presented both auditorily and
visually. Across participants, all lists were used equally often in the male,
female, and new conditions.

Study phase. During the study phase, participants were presented
with 80 words, half by a male voice and half by a female voice. They were
not informed that there would be a subsequent test of memory, but instead
were asked to rate each word according to the difficulty of covertly
reproducing or imagining the quality of the voice. Words spoken by the
male and female voices were presented in a random order, with the
restriction that no more than four of one type were presented in succession.
To diminish primacy and recency effects, six additional buffer words were
added at the beginning and the end of the lists.

Test phase. All 120 words were presented visually in a random order
with the constraint that no more than four of one type were presented in
succession. For each word, participants made three judgments on 7-point
confidence scales (1 = not confident; 7 = very confident): (1) they
indicated their confidence that the word had been spoken by a male, (2)
they indicated their confidence that the word had been spoken by a female,
and (3) they indicated their confidence that the word was new. They were
also instructed neither to use only ratings of 1 and 7 nor to try to distribute
their ratings evenly. The experimenter suggested to participants that they
use any rating that corresponded to the strength of their memory.

Results and Discussion

Continuous model parameter estimation. Table 2 displays for
each item type (male, female, new) the distribution of ratings for both
"old-new" judgments and for source identification judgments. Re-
sponses other than the appropriate integer ratings of 1-7 were dis-
carded, resulting in totals less than 960 for each item type. To assess
old-new recognition memory, ROCs and zROCs were plotted sepa-

rately for male versus new items and for female versus new items (see
Figure 4). When plotting the item memory ROC, data are summed
over the source ratings converting the two-dimensional response
matrix into a one-dimensional response matrix. After this, ROC
curves are generated by plotting cumulative sums of item and new
data against one another. An alternative approach to plotting the ROC
operates on the two-dimensional matrices without collapsing over the
source ratings (Klein, 1985; Slotnick, 1996). This technique results in
slightly higher d' estimates. Best-fit continuous models and two-high
threshold models were fit to each ROC.

The ROC curves were fit by chi-square minimization using the
Marquardt least squares algorithm (Press et al.» 1988). The chi-
square function to be minimized is given by:

The observed data (O*) is the actual ROC hit rate value, the
expected value (E;) is the hit rate from the model prediction, and
the standard deviation is given by binomial statistics:

of =

erf =

(2a)

(2b)

where N is the total number in each rating bin. The results using
Equations 2a or 2b are almost identical for all the plots evaluated.
Equation 2b was used because Equation 2a is more sensitive to the
choice of initial condition for the least squares search.

The two-high threshold model assumes that the hit rate proba-
bility, Ej, is a linear function of the false alarm rate, F^

t = aFi + b. O)

The signal detection model assumes that the z score of the hit rate,
z(Ei), is a linear function of the z-score of the false alarm rate,

z(Es) = + b. (4)
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Table 2
Item Detection and Source Ratings (Experiment I)

"O/N"

1
2
3
4
5
6
7

Male Voice
Judge "Female" Judge "Male" ->
4 5 6 7 8 9 10 11 12 13

24
0
1
0
0
0
1

20
1
0
0
0
0
0

29
13
1
1
1
0
0

43
4
0
0
0
0
0

47
11
4
2
1
1
1

30
17
4
6
1
1
1

57
23
15
27
14
26
50

40
19
6
10
3
3
0

48
13
8
2
3
3
0

50
6
1
4
1
1
0

66
13
1
1
1
1
1

31
1
1
1
1
1
0

128
1
0
0
0
0
0

26 21 45 47 67 60 212 81 77 63 84 36 129

613
122
42
54
26
37
54

948

"O/N"

1
2
3
4
5
6
7

Female Voice
Judge "Female" Judge "Male" ->
4 5 6 7 8 9 10 11 12 13

99
1
3
0
1
0
1

35
1
0
2
1
0
0

66
11
1
2
1
0
0

48
7
4
1
1
0
0

48
16
7
3
0
0
1

38
14
7
3
2
4
1

85
23
15
24
31
19
42

38
14
3
3
6
1
0

38
12
7
5
1
1
1

43
9
1
0
0
0
0

35
8
0
1
2
0
0

12
0
0
0
1
0
0

31
0
2
1
0
0
0

105 39 81 61 75 69 239 65 65 53 46 13 34

616
116
50
45
47
25
46

945

"O/N"

1
2
3
4
5
6
7

New Items
<r~ Judge "Female" Judge "Male" ->

3 4 5 6 7 8 9 10 11 12

11 10 19 23 31 76 636 60 31 24 19

13
7
1
0
2
0
0
1

9
1
0
0
0
0
0

9
6
2
1
1
0
0

9
8
0
4
2
0
0

22
2
4
2
1
0
0

25
13
17
9
8
4
0

66
37
33
65
83
118
234

17
13
3
13
8
6
0

17
8
2
2
1
1
0

10
3
0
1
1
1
0

11
5
1
1
1
0
0

6
0
0
0
1
0
0

8
1
1
0
0
0
0

10

216
103
65
101
107
130
235

957

Note. "O/N" - "Old-New" confidence rating.

In both cases there is a two-parameter fit to the data, so it is
possible to compare the chi-square values of the best-fit models.

A caveat must be added regarding this procedure for fitting
ROC and zROC curves. In this procedure we have assumed that

the false alarm rate (and its z score) is known exactly, so that one
can perform a linear regression. The proper method is to perform
a chi-square fit to both the hit rate and false alarm rate data.
Furthermore, the cumulative probabilities are highly correlated, so
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ROC male vs. new ROC female vs. new

° Measured Points
— Continuous Model
— 2-HT Model

p("male"/new)

zROC male vs. new

pffemale'Vnew)

zROC female vs. new

-2.5
z(False Alarm Rate) z(False Alarm Rate)

Figure 4. From Experiment 1, the old-new recognition receiver operating characteristic (ROC) and best-fit
signal, detection and two-high threshold models are shown for the male versus new data in the top-left figure and
(he female versus new data in the top-right figure. Corresponding z-transfonned ROCs (zROCs) are shown in
the bottom figures. 2-HT = two-high threshold.

the proper chi-square analysis should use the probability of each
rating category rather than the cumulative probabilities (Levi &
Klein, 1984; Macmillan & Creelman, 1991). However, we have
used the linear regression method on the cumulative data (Equa-
tions 3 and 4) for comparison to other research in this field
(Ratcliff et al., 1992; Yonelinas, 1999).

The signal detection model defines d' as distance from the
origin to the zROC multiplied by s/2 as recommended by Mac-

millan and Creelman (1991). For old-new recognition, d' was 1.18
for both male items and female items. The ratio of the standard
deviations for new to old items was .86 ± .15 for male items and
.93 ± .12 for female items (95% confidence intervals reported).
Both standard deviation ratios were near Ratcliff s proposed value
of .8 (Ratcliff et al., 1992; 1994). In terms of confidence bias, the
mean criterion value was - .47 and - .49 for male and female
items, respectively. Thus, in terms of item recognition, standard
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deviation ratio, and criteria placement, studied items presented
with a male voice were comparable with items presented with a
female voice.

Figure 5 shows the ROCs and ^ROCs for source identification.
The figures on the left were produced with data summed (col-
lapsed) over all "old-new" ratings, Plotted with the data is the
best-fit continuous model and best-fit, two-high threshold model.
Collapsed source identification d' was .57, average criterion
bias was —.03, and male-female standard deviation ratio was
.97 ± .05,

ROC male vs. female (collapsed)

Because there is very little source information within the "old-
new" ratings of 2-7, collapsing over all ratings when conducting
source analysis has the effect of washing out the relevant source
information. This is due to the addition of the large number of
responses at or centered around "male-female" rating bin 7, where
previously presented words are not remembered or word source is
unknown. When collapsing the data, the ROC is "pulled" toward
the chance line resulting in a flattened ROC. This artifactual
flattening would be expected to result in a better fit for the
threshold models and fair worse for the continuous model.

ROC male vs. female (top)

° Measured Points
— Continuous Model
--2-HT Model

p("male" /female)

zROC male vs. female (collapsed)

p("male"/ female)

zROC male vs. female (top)

-2.5
z(False Alarm Rate) z(False Alarm Rate)

Figure 5, The collapsed and top source identification receiver operating characteristics (ROCs) and
z-transformed ROCs (zROCs) from Experiment 1 with the best-fit models. 2-HT - two-high threshold.
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To refine the source analysis, the male versus female condition
was also conducted on data from the top "old-new" rating of 1
(Murnane & Bayen, 1996). The top source identification d' was
.71, average criterion bias was —.04, and male-female standard
deviation ratio was .93 ± .05. As the noise included in the analysis
is reduced in the top rating condition, the increase in d' as com-
pared to the collapsed condition is expected. The proximity of the
standard deviation ratio to 1 is also expected because the memory
strength distributions of the male source and female source should
be approximately the same. In sum, the continuous model offered
reasonable parameters that characterized item detection, source
identification, criterion biases, and the variability of the underlying
distributions.

Chi-square analysis. From the confidence ratings, we evalu-
ated the ROCs using chi-square analysis for both item detection
and source identification in terms of the degree to which they
conformed generally to a continuous (curvilinear) or a two-high
threshold (linear) model (see Table 3). For old-new judgments, the
ROCs for item recognition were adequately fit by a continuous
model and were not adequately fit by a two-high threshold model.
Specifically, for the continuous model the fits for male items and
female items were adequate, whereas the fits for the high-threshold
models were significantly inadequate. To ensure these effects were
not due to averaging over subjects, a subject-by-subject analysis
was conducted using the maximum likelihood ROC analysis
(Dorfman & Alf, 1969). Although it seldom occurred, subjects
with perfect performance (i.e., hit rate = 1 at varying false alarm
rates) were excluded from the analysis. For these subjects, both
models fit the data perfectly, and thus its inclusion could not be
used to distinguish between the models. The individual subject
analyses produced similar results for both male (2 subjects ex-
cluded) and female (2 subjects excluded) items, though these
comparisons failed to reach significance. In this case of item
memory, we can only argue for the relative superiority of the
continuous model. Anomalously low chi-square values could be
due to the lack of independence of ROC points while anomalously
high chi-square values could be due to chi-square fitting and
summation in only the vertical dimension rather than in both the
horizontal and vertical dimension.

Although the continuous model fit the ROC better, neither
model fit the collapsed source ROC. Only the continuous model
adequately fit the top source ROC. The individual subject source
identification analysis confirmed the results given by the averaged
data for both the collapsed data (no subjects excluded) and the top
data (no subjects excluded). In the individual subject analyses, the

continuous model fit was adequate for both source conditions. To
ensure that the results were not an artifact of having more than one
hit rate point for a false alarm rate of zero (which may have
produced a hockey-stick shaped ROC favoring the continuous
model), the individual subject analysis was also conducted exclud-
ing such subjects and the significance of all results remained the
same (5 subjects excluded).

Linearity analyses. The divergent predictions of both the con-
tinuous model and two-high threshold models can also be indi-
rectly tested using linearity analysis (Yonelinas, 1999). Specifi-
cally, the two-high threshold model predicts a linear ROC, and the
continuous model predicts a linear zROC. In addition, the contin-
uous model predicts an inverted U-shaped curvilinear ROC,
whereas the two-high threshold model predicts a U-shaped curvi-
linear zROC. Linearity of the ROC or zROC can be tested by
determining if the addition of a quadratic term provides a signif-
icantly better fit than a linear fit. Basically, linearity analysis
consists of first fitting a line to either the ROC or zROC to
determine whether there is a significant linear component in the
function (rejecting the null hypothesis that a line provides an
identical fit to the mean of the data) and then fitting a line +
quadratic to the ROC or zROC to determine whether there is a
significant quadratic component in the function (rejecting the null
hypothesis that a line + quadratic provides an identical fit to a fit
of a line alone). In testing the significance of the linear component,
standard linear regression was conducted, treating the false alarm
rates (*-axis direction) as fixed and regressing in the y-axis direc-
tion (i.e., the hit rate). The test for significance of the quadratic
component was conducted twice: (1) by fixing the false alarm rates
and regressing in the y-axis direction and (2) by fixing the hit rates
and regressing in the jt-axis direction. The data reported comes
from the regression in either the x-axis or >>-axis direction with the
lowest sum of squared error (i.e., the best fit). Testing for linear
significance was also conducted in both the x- and y-axis direction
but did not affect any of the conclusions reported; therefore, we
only report linear regression results in the y-axis direction. A
significance level of p < .05 is used in all experiments. These
procedures are identical to those used by Yonelinas (1999). Also
reported is the quadratic component (c) from the regression in the
y-axis direction, which can be used to determine the direction of
curvature (i.e., U-shape or inverted U-shape). This is important in
the analysis of zROC shapes (Glanzer et alM 1999b).

Linearity analysis (see Table 4) showed that recognition ROCs
were curvilinear for both male items and female items. Similarly,
both source conditions resulted in curvilinear ROCs. The curvilin-

Table 3
On-Square Analysis Results (Experiment 1)

ROC type

Group analysis

Continuous High-threshold

Individual subject analysis

Continuous High-threshold

Male items
Female items
Collapsed source
Top source

= 9.31, p = .054
= 5.40, P = .25

=* 26.25, p = .0034
= 14.69, p = .14

= 41.86, p<. 001
= 4 1 . 8 7 , p < .001

= 112.25, p< .001
= 84.27, p < .001

= 49.81, p = 1.00
^ = 41.83, p = 1.00
^(240) = 213.05, p = .89
^(240) = 184.06, p = 1.00

= 110.66, p = .051
A %M1/ = 94.21, p - 21
^(240) = 385.93, p < .001
X2(240) = 341.96, p < .001

Note. Bold p values indicate an adequate fit. ROC = receiver operating characteristic.
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Table 4
Linear Analysis Results (Experiment 1)

MSE

ROC type
Male items

Linear
Quadratic

Female items
Linear
Quadratic

Collapsed source
Linear
Quadratic

Top source
Linear
Quadratic

.8844

.9877

.9026

.9933

.9875

.9994

.9728

.9975

F(l, 4) = 30.60
F(l, 3) = 25.20

F(l, 4) = 37.09
F(l, 3) = 40.28

F(l, 10) = 789.71
F(l, 9) = 18731

F(l, 10) = 357.64
F(l, 9) = 88.06

.0016

.0002

.0015

.0001

.0014
<.0001

.0020

.0002

-1.13

-1.09

-0.52

-0.65

zROC type
Male items

Linear
Quadratic

Female items
Linear
Quadratic

Collapsed source
Linear
Quadratic

Top source
Linear
Quadratic

.9744

.9981

.9845

.9983

.9936

.9996

.9923

.9977

F(l, 4) = 152.25
F(l, 3) = 37.95

F(l, 4) = 253.42
F(l,3) = 23.80

F(l, 10) = 1548.7
F(l, 9) = 124,33

F(l, 10) = 1296.3
F(l, 9) = 20.55

.0058

.0008

.0041

.0006

.0074

.0006

.0057

.0021

-0.28

-0.24

0.09

0.09

Note. Bold F values indicate a significant component. ROC = receiver
operating characteristic; zROC = ^-transformed ROC.

ear source ROCs are in accordance with the predictions of the
continuous model and are not in accordance with the predictions of
the two-high threshold model.

Linearity analysis of the zROCs showed that both item memory
functions were curvilinear. Although the quadratic component
significantly improved the fit of the data, the negative quadratic
coefficients indicate the curves are inverted U-shapes. An inverted
U-shape is not predicted by either the continuous model or two-
high threshold model. Therefore, these curvilinear fits do not show
support for either model. However, the negative coefficients do
correspond with a predicted variability centered about zero shown
by an analysis of recognition memory and used to support the
continuous model predictions (Glanzer et al., 1999b). Both source
zROCs were also shown to be curvilinear. The curvilinear zROCs
are contradictory to the predictions of the continuous model and in
line with the predictions of the threshold models. Thus, linearity
analysis of the source ROCs provided evidence against the two-
high threshold model and in support of the continuous model and
linearity analysis of the source zROCs provided evidence against
the continuous model and in support of the two-high threshold
model.

Experiment 2

In Experiment 2, we used a different rating procedure to assess
source memory. In the first experiment, source memory judgments
were obtained by the integration of two separate confidence judg-

ments (with a third judgment for old-new). That is, for each test
item, we obtained one confidence rating that determined the degree
to which participants judged the item as a Source A item and
another rating that determined the degree to which participants
judged the item as a Source B item. There are some advantages to
the use of two separate judgments. First, there is no need to force
participants to integrate both source judgments on a single dimen-
sion—for example, 1 = high confidence that the item came from

Table 5
Item Detection and Source Ratings (Experiment 2)

Male Voice
<— Judge "Female" Judge "Male" -»

7 6 5 4 3 2 1 Z
551
82
61
50
23
26

863

£ 27 37 48 214 100 133 304 863

Female Voice
<— Judge "Female" Judge "Male" -4

"O/N" 7 6 5 4 3 2 1 S
545
89
52
64
17
31
63

X 273 154 89 208 73 40 24 861

New
<- Judge "Female" Judge "Male" ->

"O/N« 7 6 5 4 3 2 1 S

1
2
3
4
5
6
7

25
0
0
1
0
0
1

24
7
5
0
0
1

0

24
14
8
0
2
0
0

21
16
16
49
20
24
68

57
18
23
0
0
1

1

102
22
9
0
0
0
0

298
5
0
0
1
0
0

1
2
3
4
5
6
7

265
3
0
0
0
1

4

121
24
6
0
0
1
2

44
22
16
2
3
2
0

19
15
15
62
14

26

57

41
19
12
0
0
1
0

31
6
3
0
0
0
0

24
0
0
0
0
0
0

1
2
3
4
5
6
7

3
0
0
1
0
0
0
4

5
4
1
0
0
2
0
12

2
3
5
1
6
2
1

20

11
4
15
137
68
139
416

790

3
7
10

2

0
1
0

23

2
2
2
0
0
0
0

6

3
0
1
0
0
0
1

5

29

20

34

141

74

144
418

888

Note. "O/N" = "Old-New" confidence rating.
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ROC male vs. new ROC female vs. new

Measured Points
Continuous Model
2-HT Model

p("male"/new)

zROC male vs. new

p(" female"/new)

zROC female vs. new

-2.5 z(False Alarm Rate) z(False Alarm Rate)

Figure 6. The old-new recognition receiver operating characteristics (ROCs) and ^-transformed ROCs
(zROCs) from Experiment 2 with the best-fit models. 2-HT = two-high threshold.

Source A, and 7 = high confidence that the item came from Source
B. Yet, this kind of two-judgment rating is not common and
anomalies may have occurred when the data set from the two
source judgments were integrated into one. Thus, in Experiment 2
we used a single confidence rating scale to assess source memory.

Method

Participants. The participants were 27 undergraduates from the Uni-
versity of California, Berkeley, who were each paid $8 for their
participation.

Materials. The stimuli were similar to those used in Experiment 1. The
target materials consisted of 96 nouns that were divided into three sets
of 32 that were matched for length (5 letters) and frequency (M = 90)
(Ku£era & Francis, 1967). The three sets of words were rotated in the
experimental design so that each set was spoken by the male voice and the
female voice at study and also served as new items on the test. The study
list contained 74 words, with the words in the first five and last five
positions serving as buffer items. Of the remaining 64 target words, 32
were spoken by the male and 32 were spoken by the female. The words
were randomly intermixed with the constraint that no more than three
words from one voice appeared consecutively. After all 64 target words
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ROC male vs. female (collapsed) ROC male vs. female (top)

0 Measured Points
— Continuous Model
— 2-HT Model

p ("male"/ female)

zROC male vs. female (collapsed)

p("male'7 female)

zROC male vs. female (top)

2.5

-2.5
z(False Alarm Rate) z(False Alarm Rate)

Figure 7. The collapsed and top source identification receiver operating characteristics (ROCs) and
z-transformed ROCs (zROCs) from Experiment 2 with the best-fit models. 2-HT = two-high threshold.

were presented, they were repeated in a different random order. The
visually presented test list consisted of 96 target words (64 old words
and 32 new words) and an additional 10 practice words at the beginning of
the list that were not scored.

Procedure. The study procedure was identical to that used in Experi-
ment 1. After the study phase, participants were given the memory test and
were informed that the test contained both new words and old words
spoken by the male and the female. Participants were told diat they would
make two judgments for each word. First, they would rate their confidence
(1-7) about whether the word was old or new (1 = very confident "old;"

7 = very confident "new"), Second, participants were instructed to rate
their confidence (1-7) about the source of each word (1 = very confident
that the male spoke the word; 7 = very confident that the female spoke the
word). As in Experiment 1, participants were told to use any response on
the 7-point scale that corresponded to their memory strength.

Results and Discussion

Continuous model parameter estimation. The rating distribu-
tions for all sources are given in Table 5 (responses other than 1-7
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were eliminated). Figure 6 displays the old-new recognition ROCs
and zROCs for both male and female item memory. Signal detec-
tion and high-threshold models were fit to the data. Male items had
a a" of 1.80 and female items had a d' of 1.82. Criteria were .01 for
both male and female items. The standard deviation ratio was
.54 ± .12 for male items and .57 ± .11 for female items. These
values deviate from Ratcliff et al.'s (1992) constant of .8 and show
that old-new variance is indeed variable as shown by Glanzer et al.
(1999b). As in Experiment 1, recognition memory strength, mean
critia location, and standard deviation ratio were similar for male
and female items.

The collapsed and top source identification ROCs and zROCs
are illustrated in Figure 7. For the collapsed data, d' was 1.41,
criterion was at — .02, and the standard deviation ratio was .94 ±
.08. For the top data, d' was 1.86, criterion was at —.05 and
standard deviation ratio was 1.01 ± .13. As in Experiment 1,
collapsing over "old-new" ratings resulted in a lower d' because of
the addition of noise. In addition, the proximity of the variability
ratio to unity indicates that the distribution of source memory
strength was similar.

Chi-square analysis. For item detection, the continuous model
for male items and female items did not adequately fit the ROCs,
but they still fared better numerically than the two-high threshold
model (see Table 6). Only the continuous model provided an
adequate fit in the individual subject analysis for both male (one
subject removed) and female items (no subjects removed).

As in Experiment 1, neither model fit the collapsed source data,
whereas only the continuous model fit the top source data. The
individual subject analysis resulted in an adequate fit by the
continuous model for both source conditions. To ensure that the
results were not an artifact of having more than one hit rate point
for a false alarm rate of zero, the individual subject analysis was
also conducted excluding such subjects and the significance of all
results remained the same (3 subjects excluded). The findings of
using a single rating for source memory were generally consistent
with the findings of Experiment 1 and thus indicate that the results
obtained in that experiment were not an artifact of the three-
judgment source memory procedure.

Linearity analysis. Recognition ROCs were curvilinear for
both male items and female items (see Table 7). Both source
conditions resulted in curvilinear ROCs as well.

In contrast with Experiment 1, linearity analysis of the zROCs
showed that both item memory functions were linear. The col-
lapsed source memory sROC was also shown to be linear, whereas
the top source memory zROC was shown to be curvilinear. How-

Table 7
Linear Analysis Results (Experiment 2)

ROC type
Male items

Linear
Quadratic

Female items
Linear
Quadratic

Collapsed source
Linear
Quadratic

Top source
Linear
Quadratic

zROC type
Male items

Linear
Quadratic

Female items
Linear
Quadratic

Collapsed source
Linear
Quadratic

Top source
Linear
Quadratic

.7862

.9827

.7983

.9864

.9152

.9911

.7079

.9705

.9627

.9837

.9724

.9876

.9943

.9971

.9765

.9984

F

F(l, 4) = 14.71
F(l, 3) = 34.14

F(l, 4) = 15.83
F(l, 3) = 41.46

F(l, 4) = 43.19
F(l, 3) = 25.51

F(l, 4) = 9.69
F(l, 3) = 26.69

F(l, 4) = 103.25
F(l, 3) = 3.86

F(l, 4) = 140.82
F(1T 3) = 3.69

F(l, 4) = 703.53
F(l, 3) = 2.77

F(l, 4) = 16635
F(l, 3) = 41.40

MSE

.0030

.0010

.0031

.0008

.0067

.0009

.0011

.0011

.0071

.0041

.0059

.0035

.0055

.0038

.0092

.0008

c

- L 3 9

-1.43

-1.56

-3.12

-0.16

-0.15

0.08

-0.23

Note. Bold F values indicate a significant component. ROC = receiver
operating characteristic; zROC - z-transformed ROC.

ever, the negative quadratic component indicates the top zROC is
an inverted-U shape, which does not correspond well with the
predictions of either model. Like the negative values of c reported
by Glanzer et al. (1999b) in item memory, this negative quadratic
component in source identification could similarly be interpreted
as a variation about a mean c of zero predicted by the continuous
model. Overall, the linearity analysis of the source ROCs provided
evidence in favor of the continuous model and provided evidence
against the two-high threshold model. Unlike Experiment 1, lin-
earity analysis of the collapsed source zROC also provided evi-
dence in favor of the continuous model and provided evidence
against the two-high threshold model while linearity analysis of
the top source zROC provided evidence which did not support the
predictions of either model.

Table 6
Chi-Square Analysis Results (Experiment 2)

ROC type

Group analysis Individual subject analysis

Continuous High-threshold Continuous High-threshold

Male items
Female items
Collapsed source
Top source

= 12.98, p = .011
= 10.85, p = .028
= 10.04, p = .040
= 5.47, p = .24

= 60.49, p < .001
= 62.69, p < .001
= 218.80, p< .001
= 120.02, p < .001

^(104) = 71.21, p = .99
^(108) = 91.23, p = .88
^(104) = 67.73, p = 1.00
^(100) = 62.03, p = 1.00

^(104) = L87.47, p < .001
/ (108) = 182.95, p < .001
^(104) = 280.35, p < .001
^(100) = 241.77, p< .001

Note. Bold p values indicate an adequate fit. ROC = receiver operating characteristic.
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Experiment 3

Many participants in the previous experiments performed very
well (perfectly in a few cases). It is possible that the previous
results may have been influenced by abnormally high performance
levels. To reduce the level of performance, this experiment utilizes
a longer study list. This also has the fortunate side-effect of
increasing the statistical power in the analysis.

Method

Participants, The participants were 24 undergraduates from Harvard
University, who were each paid $8 for their participation.

Materials. Materials were similar to those used in Experiment 2,
but 80 words were used for each item type rather than 32 words.

Procedure. The procedure was identical to Experiment 2 except for a
reversal in the rating scales (for old-new ratings, 1 = very confident "new"
and 7 = very confident "old;" for source ratings, 1 = very confident
"female" and 7 = very confident "male").

Results and Discussion

Continuous model parameter estimation. Table 8 contains the
rating distributions for all item types (responses other than 1-7
were eliminated). Figure 8 displays the old-new recognition ROCs
and zRQCs for both male and female item detection. Male items
had a df of 1.59 and female items had a d' of 1.57. Criteria were
placed at - .12 and - .11 for both male and female items, respec-
tively. The standard deviation ratio was .76 ± .04 for male items
and .75 i .04 for female items. These values are close to Ratcliff
et al.'s (1992) constant of .8. As in the previous experiments,
parameter values are similar for both male and female items.

The collapsed and top source identification ROCs and sROCs
are illustrated in Figure 9. For the collapsed data, d' was 1.08,
criterion was at .02, and male—female standard deviation ratio was
.98 ± .21. The top data resulted in a d' of 1.66, a criterion
placement of .01, and a standard deviation ratio of .98 ± .11. As
in the previous experiments, the d' from the collapsed data is lower
than the d' from the top data and the standard deviation ratios are
near unity. By comparing the right and left figures in the top of
Figure 9, one can see that collapsing the data effectively pulls the
ROC toward the chance line, thereby lowering d'.

Chi-square analysis. For item detection, only the continuous
model adequately fit the data (see Table 9). The individual subject
analysis produced the same results (no subjects excluded).

Although the continuous model fit the data better for both
source memory conditions, neither model adequately fit the data.
The results were confirmed by the individual subject analysis in
the collapsed condition (no subjects excluded); however, individ-
ual subject analysis did show an adequate fit for the continuous
model in the top source condition (no subjects excluded). To
ensure that the results were not an artifact of having more than one
hit rate point for a false alarm rate of zero, the individual subject
analysis was also conducted excluding such subjects, and the
significance of all results remained the same (one subject ex-
cluded). The lower d's in all conditions and lack of exclusion of
subjects because of perfect performance in this experiment, as
compared to Experiment 2, indicate that performance was not near
ceiling.

Table 8
Item Detection and Source Ratings (Experiment 3)

Male Voice
<- Judge "Female" Judge "Male" —>

»o/N" 1 2 3 4 5 6 7 2
7

6

5

4

3

2

1

22

1

0

0

0

0

0

73

49

16

0

1

2

0

86

57

86

3

8

7

0

49

41

70

98

117

106

49

103

102

82

1

6

4

2

202

77

5

2

0

0

0

385

7

0

0

0

0

0

2 23 141 247 530 300 286 392

Female Voice
<— Judge "Female" Judge "Male" ->

"O/N" 1 2 3 4 5 6 7

£ 408 293 301 548 232 112 26

New
*- Judge "Female" Judge "Male" -

"O/N» 1 2 3 4 5 6 7

920

334

259

104

132

119

51

1919

7

6

5
4
3

2

1

399

8

0

1

0

0

0

181

89

22

0

0

1

0

114

77

94

0

7

9

0

55

40

77

103

109

106

58

74

78

68

0

9

3

0

63

36

11

2

0

0

0

24

2

0

0

0

0

0

910

330

272

106

125

119

58

1920

7

6

5

4
3

2

1

Z

5

0

0

0

0

0

0

5

6

20

10

0

2

1

1

40

17

21

75

10

15

12

1

151

6

26

87

157

321

494

475

1566

12

30

63

2

14

8

2

131

8

12

4

0

1

0

0

25

1

0

0

0

0

0

0

1

55

109

239

169

353

515

479

1919

Note. "O/N" = "Old-New" confidence rating.

Linearity analysis. Linearity analysis showed that recognition
ROCs were curvilinear for both male items and female items (see
Table 10). Both source conditions also resulted in curvilinear
ROCs. By comparing the quadratic term for the collapsed data
with that of the top data in this experiment (—.84 vs. —2.27), it is
apparent that collapsing the data has the effect of flattening out the
ROC.

Linearity analysis of the zROCs showed that both item memory
functions were linear, whereas both source memory functions were
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ROC male vs. new ROC female vs. new

° Measured Points
— Continuous Model

— 2-HT Model

p("male"/new)

zROC male vs. new

p("female"/new)

zROC female vs. new

-2.5 z(False Alarm Rate) zfFalse Alarm Rate)

Figure 8. The old-new recognition receiver operating characteristics (ROCs) and z-transformed ROCs
(zROCs) from Experiment 3 with the best-fit models. 2-HT = two-high threshold.

curvilinear. Therefore, the linearity analysis of the source ROCs
shows support for the continuous model and provides evidence
against the two-high threshold model, whereas the linearity anal-
ysis of the source zROCs shows support for the two-high threshold
model and provides evidence against the continuous model.

General Discussion

In all three experiments, linearity analyses of the source ROCs
provided evidence in favor of the continuous model and against the

two-high threshold model. Linearity analyses of the source zROCs
provided mixed results: The results from Experiment 1 and Ex-
periment 3 showed evidence in favor of the two-high threshold
model and against the continuous model, whereas results from
Experiment 2 showed evidence in favor of the continuous model
and against the two-high threshold model. The results of the
linearity analysis do not show that either model is correct; how-
ever, the threshold model was rejected in all cases by the source
ROC analyses, and the continuous model was not rejected in all
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ROC male vs. female (collapsed) ROC male vs. female (top)

° Measured Points
— Continuous Model
--2-HT Model

pC'male" / female)

zROC male vs. female (collapsed)

pC'male" /female)

zROC male vs. female (top)

z(False Alarm Rate) z(False Alarm Rate)

Figure 9. The collapsed and top source identification receiver operating characteristics (ROCs) and
z-transformed ROCs (zROCs) from Experiment 3 with the best-fit models. 2-HT = two-high threshold.

cases by the source zROC analyses. It is also important to remem-
ber that linearity analysis is an indirect test of the predictions of the
models. The fit of a quadratic term is not identical to the curvature
of the ROC predicted by the continuous model or the curvature of
the zROC predicted by the two-high threshold model. Although
useful as a convergent method of analysis, the results of the
linearity analysis do not comprise an actual test of the models
themselves. In contrast, the chi-square analysis is conducted by
fitting each model to the data and then determining the error of this

fit. Thus, the chi-square analysis is a direct measure of model
adequacy.

In all cases of the chi-square analysis, the continuous model fit
the data numerically better than a two-high threshold model. In
fact, the threshold model did not adequately fit the data in any
case. This suggests that a two-high threshold model is not an
appropriate model of source memory in general. The result that our
model did not always adequately fit the data does not surprise us,
as it seems unlikely that the complex cognitive process of source



MODELS OF SOURCE MEMORY 1515

Table 9
Chi-Square Analysis Results (Experiment 3)

ROC type

Group analysis Individual subject analysis

Continuous High-threshold Continuous High-threshold

Male items
Female items
Collapsed source
Top source

= 1.55, p = . 82
= 1.99, p = .74

^ ( ) = 206.28, p < .001
/ ( 4 ) = 12.78, p = .012

X*(4) = 397.90, p < .001
^ ( ) = 410.80, p< .001
X*(4) = 262.23, p < .001
^ 176.77, p < .001

^(96) = 85.5, p = .77
^ = 87.1,/ . = .73

= 142.65, p = .0014
= 74.36, p = .95

= 569.25, p < .001
= 595.05, p < .001
= 354.65, p < .001
= 269.89, p < .001

Note. Bold p values indicate an adequate fit. ROC = receiver operating characteristic.

memory can be fit by any two-parameter model. In the world of
modeling, the goal is to use the best-fitting model until a better
model is created. It is surprising that in all cases where source
memory ROCs were not influenced by the addition of noise (by
collapsing the data) or anomalous averaging effects (by averaging
over subjects), the continuous model adequately fit the data.

Both Donaldson, MacKenzie, and Underhill (1996) and Yoneli-
nas (1999) applied signal detection methodology to item detection
and to source identification. In terms of item memory, Yonelinas
(1994) proposed a dual-process model of recognition memory in
which memory performance is based on two independent judg-
ments—a continuous judgment of item familiarity and an added
threshold recollection decision. Recollection is presumed to in-
volve a discrete process that increases recognition performance for

Table 10
Linear Analysis Results (Experiment 3)

ROC type
Male items

Linear
Quadratic

Female items
Linear
Quadratic

Collapsed source
Linear
Quadratic

Top source
Linear
Quadratic

zROC type
Male items

Linear
Quadratic

Female items
Linear
Quadratic

Collapsed source
Linear
Quadratic

Top source
Linear
Quadratic

R2

.8019

.9839

.7971

.9811

.9712

.9984

.8442

.9918

.9993

.9993

.9991

.9995

.9519

.9992

.9843

.9990

F

F(l, 4) = 16.19
F(l, 3) = 33.92

F(l, 4) = 15.71
F(l, 3) = 29.27

F(l, 4) = 134.88
F(l, 3) = 51.43

F(l, 4) = 21.67
F(I, 3) = 54.35

F(l, 4) = 5643.3
F(l, 3) = .0017

F(l, 4) = 4290.7
F(l, 3) = 2.58

F(1.4) = 79.21
F(l, 3) = 173.22

F(l, 4) = 250.94
F(l, 3) = 44.28

MSE

.0070

.0019

.0085

.0023

.0036

.0003

.0077

.0005

.0004

.0006

.0005

.0004

.0802

.0018

.0111

.0009

c

- L 2 4

-1.27

-0.84

-2.27

<0.01

-0.02

0.25

0.17

Note. Bold F values indicate a significant component. ROC = receiver
operating characteristic; zROC = z-transformed ROC.

items associated with strong source or episodic knowledge.
Yonelinas (1994) showed that the dual-process model could ac-
count for various properties of the ROC and dlOC curves assessed
in his experiments on recognition memory. In particular, Yoneli-
nas's findings added evidence against a simple signal detection
model in which it is assumed that variance of new and old
distributions are the same (i.e., <rj<ro = 1). However, his data also
appeared to be consistent with a signal detection model in which
the variability ratio is allowed to vary freely (i.e., <rn # cro). A
recent analysis of a large body of recognition memory data pro-
vides evidence against the dual-process model and in support of
the unequal variance signal detection model (Glanzer et al., 1999a,
1999b).

In terms of source memory, both Donaldson and MacKenzie
(1996) and Yonelinas (1996) reported that ROC curves for source
memory were generally linear. According to the dual-process
model, if the familiarity of sources is approximately equal, then
source identification will rely on recollection and ROCs will be
linear. Yonelinas (1999) used a two-high threshold linear model
(i.e. the restricted dual-process model) in three experiments where
familiarity was assumed to play a smaller role than recollection in
source identification. In the same study, a familiarity component
was used in a fourth experiment, where source familiarity differ-
ences were created by presenting one list of words 5 days after the
other, thereby increasing the familiarity of the more recently
presented list. In all of our experiments, familiarity can be assumed
to be approximately equal; however, the source memory ROCs
were not linear contradicting the predictions of the dual-process
model.

There may be several factors that determine the degree to which
ROC curves suggest threshold functions. The first may be the
effect of collapsing over "old-new" response ratings. Because the
procedure used to assess source memory by Yonelinas (1999)
utilizes a one-dimensional source rating scale, the responses are
collapsed over "old-new." In addition, linear functions may be
obtained if ratings are based on very limited information or fea-
tures of an episode. For example, source memory performance
may be based on requiring individuals to attend to a specific detail
or single feature. In some cases, it may be that ratings about the
presence or absence of that specific feature in memory is based on
a discrete threshold judgment (i.e., either the individual remembers
it or not). Another possibility is that source knowledge comes from
a small subset of items that are remembered extremely well This
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effect could disproportionately increase performance at the end-
points of the ROC curve and suggest a more linear function.

As indicated by the present analysis, a fairly standard signal
detection approach to source memory performance showed that
source memory is better characterized as a continuous rather than
a discrete function. In another study (Dodson et al., 1998) source
recollection was shown to involve partial source information in
addition to specific source knowledge. In that study, participants
were asked to recognize items presented by specific voices (e.g.,
two male voices, two female voices). Participants were able to
discriminate among the specific sources (i.e., voices); however,
when a source error was made, participants often chose a voice of
the same gender as the correct voice. This finding suggests that
partial information (i.e., correct gender, wrong person) contributed
to source memory performance. In everyday experiences, it is
likely that such partial knowledge mediates source recollection.
Along with the present data, the finding that partial source infor-
mation contributes to source memory judgments is also consistent
with a continuous model of source memory.
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