1,616 research outputs found

    Trophic strategy of diverse methanogens across a river-to-sea gradient

    Get PDF
    Methanogens are an important biogenic source of methane, especially in estuarine waters across a river-to-sea gradient. However, the diversity and trophic strategy of methanogens in this gradient are not clear. In this study, the diversity and trophic strategy of methanogens in sediments across the Yellow River (YR) to the Bohai Sea (BS) gradient were investigated by high-throughput sequencing based on the 16S rRNA gene. The results showed that the diversity of methanogens in sediments varied from multitrophic communities in YR samples to specific methylotrophic communities in BS samples. The methanogenic community in YR samples was dominated by Methanosarcina, while that of BS samples was dominated by methylotrophic Methanococcoides. The distinct methanogens suggested that the methanogenic community of BS sediments did not originate from YR sediment input. High-throughput sequencing of the mcrA gene revealed that active Methanococcoides dominated in the BS enrichment cultures with trimethylamine as the substrate, and methylotrophic Methanolobus dominated in the YR enrichment cultures, as detected to a limited amount in in situ sediment samples. Methanosarcina were also detected in this gradient sample. Furthermore, the same species of Methanosarcina mazei, which was widely distributed, was isolated from the area across a river-to-sea gradient by the culture-dependent method. In summary, our results showed that a distribution of diverse methanogens across a river-to-sea gradient may shed light on adaption strategies and survival mechanisms in methanogens

    Joint actions with large partners and small-firm ambidexterity in asymmetric alliances:The mediating role of relational identification

    Get PDF
    This study investigates the role of relational identification in the relation between joint actions and small-firm ambidexterity in asymmetric alliances. Using survey data on Chinese high-technology firms, we find that joint problem-solving and joint sensemaking are both positively associated with small firm's relational identification. We also find a positive relationship between small firm's relational identification and knowledge exploration and exploitation. More importantly, we show that relational identification mediates the relationships between joint actions (i.e., joint problem-solving and joint sensemaking) and small-firm ambidexterity, except for the relationship between joint sensemaking and small-firm knowledge exploitation. This study advances our understanding of the association between joint actions and ambidexterity by providing a social identification explanation

    Rare Earth Element Adsorption to Clay Minerals: Mechanistic Insights and Implications for Recovery from Secondary Sources

    Get PDF
    \ua9 2024 American Chemical Society.The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant

    Clavicular stress fracture in a cricket fast bowler: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Whilst rare, stress fractures of the clavicle have been described in other sports. To our knowledge, this is the first reported case of a stress fracture of the clavicle occurring in a cricket fast bowler.</p> <p>Case presentation</p> <p>A 23-year-old professional cricket fast bowler presented with activity related shoulder pain. Imaging demonstrated a stress fracture of the lateral third of the clavicle. This healed with rest and rehabilitation allowing a full return to professional sport.</p> <p>Conclusion</p> <p>This injury is treated with activity modification and technique adaptation. In a professional sportsman, this needs to be recognised early so that return to play can be as quick as possible.</p

    An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation

    Get PDF
    Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Tyrosinase inhibitors and insecticidal materials produced by Burkholderia cepacia using squid pen as the sole carbon and nitrogen source

    Get PDF
    [[abstract]]Reports of tyrosinase inhibitors from microorganisms are rare. A tyrosinase inhibitor- and insecticidal materials-producing bacterium, strain TKU026, was isolated from Taiwanese soil and identified as Burkholderia cepacia. Among the tested chitin-containing materials, squid pen best enhanced the production of tyrosinase inhibitors and insecticidal materials. The tyrosinase inhibitory activity (5000 U/mL) and insecticidal activity (81%) against Drosophila larvae was maximised after cultivation on 1% squid-pen containing medium for three days. The tyrosinase inhibitory activity persisted even when the culture was treated with acidic or alkaline conditions of pH 3 or 11. The activities of both tyrosinase inhibitors and insecticide remained at 100%, even after treatment at 100℃ for 30 min. The culture supernatant after three days of cultivation also showed antifungal activity against Aspergillus fumigatus and Fusarium oxysporum with maximal activities of 100% and 80%, respectively, but no antibacterial activity against Escherichia coli was observed. The tyrosinase inhibitors were assumed to be polyphenolic compounds according to the results of chromatography.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子版[[countrycodes]]NL

    The Rat IgGFcγBP and Muc2 C-Terminal Domains and TFF3 in Two Intestinal Mucus Layers Bind Together by Covalent Interaction

    Get PDF
    The secreted proteins from goblet cells compose the intestinal mucus. The aims of this study were to determine how they exist in two intestinal mucus layers.The intestinal mucosa was fixed with Carnoy solution and immunostained. Mucus from the loose layer, the firm layer was gently suctioned or scraped, respectively, lysed in SDS sample buffer with or without DTT, then subjected to the western blotting of rTFF3, rIgGFcγBP or rMuc2. The non-reduced or reduced soluble mucus samples in RIPA buffer were co-immunoprecipitated to investigate their possible interactions. Polyclonal antibodies for rTFF3, the rIgGFcγBP C-terminal domain and the rMuc2 C-terminal domain confirmed their localization in the mucus layer and in the mucus collected from the rat intestinal loose layer or firm layer in both western blot and immunoprecipitation experiments. A complex of rTFF3, which was approximately 250 kDa, and a monomer of 6 kDa were present in both layers of the intestinal mucus; rIgGFcγBP was present in the complex (250-280 kDa) under non-reducing conditions, but shifted to 164 kDa under reducing conditions in both of the layers. rMuc2 was found mainly in a complex of 214-270 kDa under non-reducing conditions, but it shifted to 140 kDa under reducing conditions. The co-immunoprecipitation experiments showed that binding occurs among rTFF3, rIgGFcγBP and rMuc2 in the RIPA buffer soluble intestinal mucus. Blocking the covalent interaction by 100 mM DTT in the RIPA buffer soluble intestinal mucus disassociated their binding.Rat goblet cell-secreted TFF3, IgGFcγBP and Muc2, existing in the two intestinal mucus layers, are bound together by covalent interactions in the soluble fraction of intestinal mucus and form heteropolymers to be one of the biochemical mechanisms of composing the net-like structure of mucus

    Tonic Shock Induces Detachment of Giardia lamblia

    Get PDF
    The single-celled organism Giardia lamblia colonizes the small intestine of a wide variety of hosts, including humans. Giardiasis infections can cause severe gastrointestinal symptoms and pose a major health concern in the developing world. Giardia are known to attach robustly to a variety of surfaces, but the conditions that influence this attachment are not known. In this study, we examined the behavior of attached Giardia parasites exposed to rapid changes in solution properties, like those Giardia might encounter in the intestine. After systematically varying media concentration and composition, we found that only one solution property caused rapid detachment of Giardia cells: tonicity, which is a measure of the total concentration of solutes in the solution that are unable to pass through a semi-permeable membrane (here, the cell membrane of Giardia). We found similar results for Giardia initially attached to monolayers of intestinal cells. Giardia cells remaining attached after a change in tonicity are able to adapt to the change, highlighting the general ability of this organism to weather normal changes in the intestinal environment. We propose that Giardia's susceptibility to large changes in tonicity could be explored as a possible new route for treatment of giardiasis

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore