52 research outputs found

    Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP)

    Get PDF
    ABSTRACT: BACKGROUND: Skeletal uptake of 99mTc labelled methylene diphosphonate (99mTc-MDP) is used for producing images of pathological bone uptake due to its incorporation to the sites of active bone turnover. This study was done to validate bone turnover markers using total skeletal uptake (TSU) of 99mTc-MDP. METHODS: 22 postmenopausal women (52-80 years) volunteered to participate. Scintigraphy was performed by injecting 520 MBq of 99mTc-MDP and taking whole body images after 3 minutes, and 5 hours. TSU was calculated from these two images by taking into account the urinary loss and soft tissue uptake. Bone turnover markers used were bone specific alkaline phosphatase (S-Bone ALP), three different assays for serum osteocalcin (OC), tartrate resistant acid phosphatase 5b (S-TRACP5b), serum C-terminal cross-linked telopeptides of type I collagen (S-CTX-I) and three assays for urinary osteocalcin (U-OC). RESULTS: The median TSU of 99mTc-MDP was 23% of the administered activity. All bone turnover markers were significantly correlated with TSU with r-values from 0.52 (p = 0.013) to 0.90 (p < 0.001). The two resorption markers had numerically higher correlations (S-TRACP5b r = 0.90, S-CTX-I r = 0.80) than the formation markers (S-Total OC r = 0.72, S-Bone ALP r = 0.66), but the difference was not statistically significant. TSU did not correlate with age, weight, body mass index or bone mineral density. CONCLUSION: In conclusion, bone turnover markers are strongly correlated with total skeletal uptake of 99mTc-MDP. There were no significant differences in correlations for bone formation and resorption markers. This should be due to the coupling between formation and resorption

    Increased tartrate-resistant acid phosphatase (TRAP) expression in malignant breast, ovarian and melanoma tissue: an investigational study

    Get PDF
    BACKGROUND: Tartrate-resistant acid phosphatase (TRAP) is a metalloprotein enzyme that belongs to the acid phosphatases and is known to be expressed by osteoclasts. It has already been investigated as a marker of bone metastases in cancer patients. In this study, which examined the value of serum TRAP concentrations as a marker of bone disease in breast cancer patients, we observed high concentrations of TRAP even in patients without bone metastases. To elucidate this phenomenon, we examined the expression of TRAP in breast cancer cells and the cells of several other malignancies. METHODS: TRAP concentrations in the serum of tumor patients were determined by ELISA. The expression of TRAP in breast, ovarian, and cervical cancer and malignant melanoma was analyzed by immunohistochemistry. RT-PCR and immunocytology were used to evaluate TRAP expression in cultured tumor cells. RESULTS: A marked increase in serum TRAP concentrations was observed in patients with breast and ovarian cancer, regardless of the presence or absence of bone disease. TRAP expression was found in breast and ovarian cancers and malignant melanoma, while cervical cancer showed only minimal expression of TRAP. Expression of TRAP was absent in benign tissue or was much less marked than in the corresponding malignant tissue. TRAP expression was also demonstrated in cultured primary cancer cells and in commercially available cell lines. CONCLUSION: Overexpression of TRAP was detected in the cells of various different tumors. TRAP might be useful as a marker of progression of malignant disease. It could also be a potential target for future cancer therapies

    Physiological Costs of Repetitive Courtship Displays in Cockroaches Handicap Locomotor Performance

    Get PDF
    Courtship displays are typically thought to have evolved via female choice, whereby females select mates based on the characteristics of a display that is expected to honestly reflect some aspect of the male’s quality. Honesty is typically enforced by mechanistic costs and constraints that limit the level at which a display can be performed. It is becoming increasingly apparent that these costs may be energetic costs involved in the production of dynamic, often repetitive displays. A female attending to such a display may thus be assessing the physical fitness of a male as an index of his quality. Such assessment would provide information on his current physical quality as well as his ability to carry out other demanding activities, qualities with which a choosy female should want to provision her offspring. In the current study we use courtship interactions in the Cuban burrowing cockroach, Byrsotria fumigata to directly test whether courtship is associated with a signaler’s performance capacity. Males that had produced courtship displays achieved significantly lower speeds and distances in locomotor trials than non-courting control males. We also found that females mated more readily with males that produced a more vigorous display. Thus, males of this species have developed a strategy where they produce a demanding courtship display, while females choose males based on their ability to produce this display. Courtship displays in many taxa often involve dynamic repetitive actions and as such, signals of stamina in courtship may be more widespread than previously thought

    No behavioural response to kin competition in a lekking species

    Get PDF
    The processes of kin selection and competition may occur simultaneously if limited individual dispersal i.e. population viscosity, is the only cause of the interactions between kin. Therefore, the net indirect benefits of a specific behaviour may largely depend on the existence of mechanisms dampening the fitness costs of competing with kin. In lekking species, males may increase the mating success of their close relatives (and hence gain indirect fitness benefits) because female prefer large leks. At the same time, kin selection may also lead to the evolution of mechanisms that dampen the costs of kin competition. As this mechanism has largely been ignored to date, we used detailed behavioural and genetic data collected in the black grouse Lyrurus tetrix to test whether males mitigate the costs of kin competition through the modulation of their fighting behaviours according to kinship and the avoidance of close relatives when establishing a lek territory. We found that neighbouring males’ fighting behaviour was unrelated to kinship and males did not avoid settling down with close relatives on leks. As males’ current and future mating success are strongly related to their behaviour on the lek (including fighting behaviour and territory position), the costs of kin competition may be negligible relative to the direct benefits of successful male-male contests. As we previously showed that the indirect fitness benefits of group membership were very limited in this black grouse population, these behavioural data support the idea that direct fitness benefits gained by successful male-male encounters likely outbalance any indirect fitness benefits

    Shake a tail feather: the evolution of the theropod tail into a stiff aerodynamic surface

    Get PDF
    Theropod dinosaurs show striking morphological and functional tail variation; e.g., a long, robust, basal theropod tail used for counterbalance, or a short, modern avian tail used as an aerodynamic surface. We used a quantitative morphological and functional analysis to reconstruct intervertebral joint stiffness in the tail along the theropod lineage to extant birds. This provides new details of the tail's morphological transformation, and for the first time quantitatively evaluates its biomechanical consequences. We observe that both dorsoventral and lateral joint stiffness decreased along the non-avian theropod lineage (between nodes Theropoda and Paraves). Our results show how the tail structure of non-avian theropods was mechanically appropriate for holding itself up against gravity and maintaining passive balance. However, as dorsoventral and lateral joint stiffness decreased, the tail may have become more effective for dynamically maintaining balance. This supports our hypothesis of a reduction of dorsoventral and lateral joint stiffness in shorter tails. Along the avian theropod lineage (Avialae to crown group birds), dorsoventral and lateral joint stiffness increased overall, which appears to contradict our null expectation. We infer that this departure in joint stiffness is specific to the tail's aerodynamic role and the functional constraints imposed by it. Increased dorsoventral and lateral joint stiffness may have facilitated a gradually improved capacity to lift, depress, and swing the tail. The associated morphological changes should have resulted in a tail capable of producing larger muscular forces to utilise larger lift forces in flight. Improved joint mobility in neornithine birds potentially permitted an increase in the range of lift force vector orientations, which might have improved flight proficiency and manoeuvrability. The tail morphology of modern birds with tail fanning capabilities originated in early ornithuromorph birds. Hence, these capabilities should have been present in the early Cretaceous, with incipient tail-fanning capacity in the earliest pygostylian birds

    Osteopetrosis

    Get PDF
    Osteopetrosis ("marble bone disease") is a descriptive term that refers to a group of rare, heritable disorders of the skeleton characterized by increased bone density on radiographs. The overall incidence of these conditions is difficult to estimate but autosomal recessive osteopetrosis (ARO) has an incidence of 1 in 250,000 births, and autosomal dominant osteopetrosis (ADO) has an incidence of 1 in 20,000 births. Osteopetrotic conditions vary greatly in their presentation and severity, ranging from neonatal onset with life-threatening complications such as bone marrow failure (e.g. classic or "malignant" ARO), to the incidental finding of osteopetrosis on radiographs (e.g. osteopoikilosis). Classic ARO is characterised by fractures, short stature, compressive neuropathies, hypocalcaemia with attendant tetanic seizures, and life-threatening pancytopaenia. The presence of primary neurodegeneration, mental retardation, skin and immune system involvement, or renal tubular acidosis may point to rarer osteopetrosis variants, whereas onset of primarily skeletal manifestations such as fractures and osteomyelitis in late childhood or adolescence is typical of ADO. Osteopetrosis is caused by failure of osteoclast development or function and mutations in at least 10 genes have been identified as causative in humans, accounting for 70% of all cases. These conditions can be inherited as autosomal recessive, dominant or X-linked traits with the most severe forms being autosomal recessive. Diagnosis is largely based on clinical and radiographic evaluation, confirmed by gene testing where applicable, and paves the way to understanding natural history, specific treatment where available, counselling regarding recurrence risks, and prenatal diagnosis in severe forms. Treatment of osteopetrotic conditions is largely symptomatic, although haematopoietic stem cell transplantation is employed for the most severe forms associated with bone marrow failure and currently offers the best chance of longer-term survival in this group. The severe infantile forms of osteopetrosis are associated with diminished life expectancy, with most untreated children dying in the first decade as a complication of bone marrow suppression. Life expectancy in the adult onset forms is normal. It is anticipated that further understanding of the molecular pathogenesis of these conditions will reveal new targets for pharmacotherapy

    Standing genetic variation and compensatory evolution in transgenic organisms: a growth-enhanced salmon simulation

    Get PDF
    Genetically modified strains usually are generated within defined genetic backgrounds to minimize variation for the engineered characteristic in order to facilitate basic research investigations or for commercial application. However, interactions between transgenes and genetic background have been documented in both model and commercial agricultural species, indicating that allelic variation at transgene-modifying loci are not uncommon in genomes. Engineered organisms that have the potential to allow entry of transgenes into natural populations may cause changes to ecosystems via the interaction of their specific phenotypes with ecosystem components and services. A transgene introgressing through natural populations is likely to encounter a range of natural genetic variation (among individuals or sub-populations) that could result in changes in phenotype, concomitant with effects on fitness and ecosystem consequences that differ from that seen in the progenitor transgenic strain. In the present study, using a growth hormone transgenic salmon example, we have modeled selection of modifier loci (single and multiple) in the presence of a transgene and have found that accounting for genetic background can significantly affect the persistence of transgenes in populations, potentially reducing or reversing a “Trojan gene” effect. Influences from altered life history characteristics (e.g., developmental timing, age of maturation) and compensatory demographic/ecosystem controls (e.g., density dependence) also were found to have a strong influence on transgene effects. Further, with the presence of a transgene in a population, genetic backgrounds were found to shift in non-transgenic individuals as well, an effect expected to direct phenotypes away from naturally selected optima. The present model has revealed the importance of understanding effects of selection for background genetics on the evolution of phenotypes in populations harbouring transgenes

    Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis

    Get PDF
    This article has an erratum: http://dx.doi.org/10.1007/s10549-011-1654-4Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, an understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidences for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L-serine in mammalian tissues. Consistently, we observed that the proliferation of MDAMB- 231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.Peer reviewe

    Stabilising selection on immune response in male black grouse Lyrurus tetrix

    Get PDF
    Illnesses caused by a variety of micro- and macro- organisms can negatively affect individuals’ fitness, leading to the expectation that immunity is under positive selection. However, immune responses are costly and individuals must trade-off their immune response with other fitness components (e.g. survival or reproductive success) meaning that individuals with intermediate response may have the greatest overall fitness. Such a process might be particularly acute in species with strong sexual selection because the condition-dependence of male secondary sexual-traits might lead to striking phenotypic differences amongst males of different immune response levels. We tested whether there is selection on immune response by survival and reproduction in yearling and adult male black grouse (Lyrurus tetrix) following an immune challenge with a novel antigen and tested the hypothesis that sexual signals and body mass are honest signals of the immune response. We show that yearling males with highest immune response to these challenges had higher survival, but the reverse was true for adults. Adults with higher responses had highest mass loss and adult males with intermediate immune response had highest mating success. Tail length was related to baseline response in adults and more weakly in yearlings. Our findings reveal the complex fitness consequences of mounting an immune response across age classes. Such major differences in the direction and magnitude of selection in multiple fitness components is an alternative route underpinning the stabilizing selection of immune responses with an intermediate immune response being optimal

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore