57 research outputs found

    A whole-cell biosensor for the detection of gold

    Get PDF
    Geochemical exploration for gold (Au) is becoming increasingly important to the mining industry. Current processes for Au analyses require sampling materials to be taken from often remote localities. Samples are then transported to a laboratory equipped with suitable analytical facilities, such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Determining the concentration of Au in samples may take several weeks, leading to long delays in exploration campaigns. Hence, a method for the on-site analysis of Au, such as a biosensor, will greatly benefit the exploration industry. The golTSB genes from Salmonella enterica serovar typhimurium are selectively induced by Au(I/III)-complexes. In the present study, the golTSB operon with a reporter gene, lacZ, was introduced into Escherichia coli. The induction of golTSB::lacZ with Au(I/III)-complexes was tested using a colorimetric β-galactosidase and an electrochemical assay. Measurements of the β-galactosidase activity for concentrations of both Au(I)- and Au(III)-complexes ranging from 0.1 to 5 µM (equivalent to 20 to 1000 ng g⁻¹ or parts-per-billion (ppb)) were accurately quantified. When testing the ability of the biosensor to detect Au(I/III)-complexes(aq) in the presence of other metal ions (Ag(I), Cu(II), Fe(III), Ni(II), Co(II), Zn, As(III), Pb(II), Sb(III) or Bi(III)), cross-reactivity was observed, i.e. the amount of Au measured was either under- or over-estimated. To assess if the biosensor would work with natural samples, soils with different physiochemical properties were spiked with Au-complexes. Subsequently, a selective extraction using 1 M thiosulfate was applied to extract the Au. The results showed that Au could be measured in these extracts with the same accuracy as ICP-MS (P<0.05). This demonstrates that by combining selective extraction with the biosensor system the concentration of Au can be accurately measured, down to a quantification limit of 20 ppb (0.1 µM) and a detection limit of 2 ppb (0.01 µM).Carla M. Zammit, Davide Quaranta, Shane Gibson, Anita J. Zaitouna, Christine Ta, Joël Brugger, Rebecca Y. Lai, Gregor Grass, Frank Reit

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    DNA Fingerprinting of Pearls to Determine Their Origins

    Get PDF
    We report the first successful extraction of oyster DNA from a pearl and use it to identify the source oyster species for the three major pearl-producing oyster species Pinctada margaritifera, P. maxima and P. radiata. Both mitochondrial and nuclear gene fragments could be PCR-amplified and sequenced. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in the internal transcribed spacer (ITS) region was developed and used to identify 18 pearls of unknown origin. A micro-drilling technique was developed to obtain small amounts of DNA while maintaining the commercial value of the pearls. This DNA fingerprinting method could be used to document the source of historic pearls and will provide more transparency for traders and consumers within the pearl industry

    State of the Art Review: Emerging Therapies: The Use of Insulin Sensitizers in the Treatment of Adolescents with Polycystic Ovary Syndrome (PCOS)

    Get PDF
    PCOS, a heterogeneous disorder characterized by cystic ovarian morphology, androgen excess, and/or irregular periods, emerges during or shortly after puberty. Peri- and post-pubertal obesity, insulin resistance and consequent hyperinsulinemia are highly prevalent co-morbidities of PCOS and promote an ongoing state of excess androgen. Given the relationship of insulin to androgen excess, reduction of insulin secretion and/or improvement of its action at target tissues offer the possibility of improving the physical stigmata of androgen excess by correction of the reproductive dysfunction and preventing metabolic derangements from becoming entrenched. While lifestyle changes that concentrate on behavioral, dietary and exercise regimens should be considered as first line therapy for weight reduction and normalization of insulin levels in adolescents with PCOS, several therapeutic options are available and in wide use, including oral contraceptives, metformin, thiazolidenediones and spironolactone. Overwhelmingly, the data on the safety and efficacy of these medications derive from the adult PCOS literature. Despite the paucity of randomized control trials to adequately evaluate these modalities in adolescents, their use, particularly that of metformin, has gained popularity in the pediatric endocrine community. In this article, we present an overview of the use of insulin sensitizing medications in PCOS and review both the adult and (where available) adolescent literature, focusing specifically on the use of metformin in both mono- and combination therapy

    Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas protegens.

    Get PDF
    Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity

    Functional characterization of TtgABC efflux pump of the RND family in the entomopathogenic bacterium Pseudomonas entomophila

    No full text
    Pseudomonas entomophila is a recently characterized entomopathogenic bacterium that can infect and kill Drosophila melanogaster upon ingestion. Although it is an environmental strain, it exhibits intrinsic resistance towards several antibiotics, as demonstrated in the present study. The intrinsic antibiotic resistance of P. entomophila was tested for ampicillin, chloramphenicol, kanamycin, streptomycine, tetracycline, imipenem, and ethidium bromide. Minimum inhibitory concentrations (MICs) were 1000 μg/ml for ampicillin, 150 μg/ml for chloramphenicol, 100 μg/ml for streptomycin, and >2000 μg/ml for ethidium bromide. The MIC values for kanamycin, tetracycline, and imipenem were much lower (5, 4, and <1 μg/ml respectively). Genome mining of the P. entomophila genome identified genes belonging to the resistance-nodulation-division (RND) family which encode efflux pumps. The ttgABC operon encoding an RND-type efflux pump in the P. entomophila genome was disrupted and its implication in ampicillin, chloramphenicol, streptomycin and ethidium bormide resistance was confirmed. © 2015 Springer-Verlag Berlin Heidelberg and the University of Mila
    corecore