31 research outputs found

    Demographic and Genetic Patterns of Variation among Populations of Arabidopsis thaliana from Contrasting Native Environments

    Get PDF
    Background: Understanding the relationship between environment and genetics requires the integration of knowledge on the demographic behavior of natural populations. However, the demographic performance and genetic composition of Arabidopsis thaliana populations in the species' native environments remain largely uncharacterized. This information, in combination with the advances on the study of gene function, will improve our understanding on the genetic mechanisms underlying adaptive evolution in A. thaliana. Methodology/Principal Findings: We report the extent of environmental, demographic, and genetic variation among 10 A. thaliana populations from Mediterranean (coastal) and Pyrenean (montane) native environments in northeast Spain. Geographic, climatic, landscape, and soil data were compared. Demographic traits, including the dynamics of the soil seed bank and the attributes of aboveground individuals followed over a complete season, were also analyzed. Genetic data based on genome-wide SNP markers were used to describe genetic diversity, differentiation, and structure. Coastal and montane populations significantly differed in terms of environmental, demographic, and genetic characteristics. Montane populations, at higher altitude and farther from the sea, are exposed to colder winters and prolonged spring moisture compared to coastal populations. Montane populations showed stronger secondary seed dormancy, higher seedling/juvenile mortality in winter, and initiated flowering later than coastal populations. Montane and coastal regions were genetically differentiated, montane populations bearing lower genetic diversity than coastal ones. No significant isolation-by-distance pattern and no shared multilocus genotypes among populations were detected. Conclusions/Significance: Between-region variation in climatic patterns can account for differences in demographic traits, such as secondary seed dormancy, plant mortality, and recruitment, between coastal and montane A. thaliana populations. In addition, differences in plant mortality can partly account for differences in the genetic composition of coastal and montane populations. This study shows how the interplay between variation in environmental, demographic, and genetic parameters may operate in natural A. thaliana populations. © 2009 Montesinos et al

    Towards the genetic architecture of seed lipid biosynthesis and accumulation in Arabidopsis thaliana

    Get PDF
    We report the quantitative genetic analysis of seed oil quality and quantity in six Arabidopsis thaliana recombinant inbred populations, in which the parent accessions were from diverse geographical origins, and were selected on the basis of variation for seed oil content and lipid composition. Although most of the biochemical steps involved in lipid biosynthesis are known and the key genes have been identified, the regulation of the processes that results in the final oil composition and total amount is not understood. By using physically anchored markers it was possible to compare results across populations. A total of 219 quantitative trait loci (QTLs) were identified, of which 81 were significant at P<0.001. Some of these colocalise with QTLs identified previously, but many novel QTLs were also identified. The results highlight the importance of studying traits in multiple populations, which will lead to a better understanding of the contribution that natural variation makes to the genetic architecture of a phenotype

    Network Analysis Identifies ELF3 as a QTL for the Shade Avoidance Response in Arabidopsis

    Get PDF
    Quantitative Trait Loci (QTL) analyses in immortal populations are a powerful method for exploring the genetic mechanisms that control interactions of organisms with their environment. However, QTL analyses frequently do not culminate in the identification of a causal gene due to the large chromosomal regions often underlying QTLs. A reasonable approach to inform the process of causal gene identification is to incorporate additional genome-wide information, which is becoming increasingly accessible. In this work, we perform QTL analysis of the shade avoidance response in the Bayreuth-0 (Bay-0, CS954) x Shahdara (Sha, CS929) recombinant inbred line population of Arabidopsis. We take advantage of the complex pleiotropic nature of this trait to perform network analysis using co-expression, eQTL and functional classification from publicly available datasets to help us find good candidate genes for our strongest QTL, SAR2. This novel network analysis detected EARLY FLOWERING 3 (ELF3; AT2G25930) as the most likely candidate gene affecting the shade avoidance response in our population. Further genetic and transgenic experiments confirmed ELF3 as the causative gene for SAR2. The Bay-0 and Sha alleles of ELF3 differentially regulate developmental time and circadian clock period length in Arabidopsis, and the extent of this regulation is dependent on the light environment. This is the first time that ELF3 has been implicated in the shade avoidance response and that different natural alleles of this gene are shown to have phenotypic effects. In summary, we show that development of networks to inform candidate gene identification for QTLs is a promising technique that can significantly accelerate the process of QTL cloning

    Natural Allelic Variation Defines a Role for ATMYC1: Trichome Cell Fate Determination

    Get PDF
    The molecular nature of biological variation is not well understood. Indeed, many questions persist regarding the types of molecular changes and the classes of genes that underlie morphological variation within and among species. Here we have taken a candidate gene approach based on previous mapping results to identify the gene and ultimately a polymorphism that underlies a trichome density QTL in Arabidopsis thaliana. Our results show that natural allelic variation in the transcription factor ATMYC1 alters trichome density in A. thaliana; this is the first reported function for ATMYC1. Using site-directed mutagenesis and yeast two-hybrid experiments, we demonstrate that a single amino acid replacement in ATMYC1, discovered in four ecotypes, eliminates known protein–protein interactions in the trichome initiation pathway. Additionally, in a broad screen for molecular variation at ATMYC1, including 72 A. thaliana ecotypes, a high-frequency block of variation was detected that results in >10% amino acid replacement within one of the eight exons of the gene. This sequence variation harbors a strong signal of divergent selection but has no measurable effect on trichome density. Homologs of ATMYC1 are pleiotropic, however, so this block of variation may be the result of natural selection having acted on another trait, while maintaining the trichome density role of the gene. These results show that ATMYC1 is an important source of variation for epidermal traits in A. thaliana and indicate that the transcription factors that make up the TTG1 genetic pathway generally may be important sources of epidermal variation in plants

    Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    Get PDF
    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping

    Patterns of allozymic variation within Calluna vulgaris populations at seed bank and adult stages

    Full text link
    We investigated the spatial genetic structure within and between two plots of Calluna vulgaris and the extent to which the soil seed bank differed genetically from adults at seven allozyme loci. Averaged over the two plots, the seed bank and adult populations contained very similar levels of genetic diversity. Moreover, seeds contained in a single soil core (100 cm3) exhibited similar mean allozyme diversity to the surrounding adult population, indicating that the seed bank preserves genetic diversity at a very local scale. Few differences in allelic frequencies were found between the seed bank and its surrounding adult population in each plot. Mean GST indicated a lack of differentiation between the two plots at adult (GST = 0.008) and seed bank (GST = 0.002) stages. Low interplot differentiation is consistent with the outcrossing mating system of the population (tm = 0.91 in one plot) and its history of human disturbance. In contrast, spatial autocorrelation analysis of adults indicated a genetic structure at a very local scale, with positive autocorrelation for all alleles below 2 m in one plot and with a pattern of positive autocorrelation below 8 m in the two plots. Current limitation to seed dispersal rather than spatial extension of clones is thought to be responsible for local genetic structure
    corecore