24 research outputs found

    Rejection in Ɓukasiewicz's and SƂupecki's Sense

    Get PDF
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Ɓukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Ɓukasiewicz and developed by his student SƂupecki, the pioneers of the method, which becomes relevant in modern approaches to logic

    Assessing the INDCs’ land use, land use change, and forest emission projections

    Get PDF
    Background: In preparation for the 2015 international climate negotiations in Paris, Parties submitted Intended Nationally Determined Contributions (INDCs) to the United Nations Framework Convention on Climate Change (UNFCCC) expressing each countries' respective post-2020 climate actions. In this paper we assess individual Parties' expected reduction of emissions/removals from land use, land use change, and forest (LULUCF) sector for reaching their INDC target, and the aggregate global effect on the INDCs on the future development of emission and removals from the LULUCF sector. This has been done through analysis Parties' official information concerning the role of LULUCF mitigation efforts for reaching INDC targets as presented in National Communications, Biennial Update Reports, and supporting information. Results: On the aggregate global level, the Parties themselves perceive that net LULUCF emissions will increase over time. Overall, the net LULUCF emissions are estimated to increase by 0.6 Gt CO2e yr-1 (range: 0.1-1.1) in 2020 and 1.3 Gt CO2e yr-1 (range: 0.7-2.1) in 2030, both compared to 2010 levels. On the other hand, the full implementation of the INDCs is estimated to lead to a reduction of net LULUCF emissions in 2030 compared to 2010 levels. It is estimated that if all conditional andunconditional INDCs are implemented, net LULUCF emissions would decrease by 0.5 Gt CO2e yr-1 (range: 0.2-0.8) by 2020 and 0.9 Gt CO2e yr-1 (range: 0.5-1.3) by 2030, both compared to 2010 levels. The largest absolute reductions of net LULUCF emissions (compared to 2010 levels) are expected from Indonesia and Brazil, followed by China and Ethiopia. Conclusions: The results highlights that countries are expecting a significant contribution from the LULUCF sector to meet their INDC mitigation targets. At the global level, the LULUCF sector is expected to contribute to as much as 20% of the full mitigation potential of all the conditional and unconditional INDC targets. However, large uncertainties still surround how Parties estimate, project and account for emissions and removals from the LULUCF sector. While INDCs represent a new source of land-use information, further information and updates of the INDCs will be required to reduce uncertainty of the LULUCF projections

    A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags

    Get PDF
    © 2017 The Author(s). Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast

    Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry

    Get PDF
    Abstract Background Coupling biomass models with nutrient concentrations can provide sound estimations of carbon and nutrient contents, enabling the improvement of carbon and nutrient balance in forest ecosystems. Although nutrient concentrations are often assumed to be constant for some species and specific tree components, at least in mature stands, the concentrations usually vary with age, site index and even with tree density. The main objective of this study was to evaluate the sources of variation in nutrient concentrations in biomass compartments usually removed during harvesting operations, covering a range of species and management conditions: semi-natural forest, conventional forest plantations and short rotation forestry (SRF). Five species (Betula pubescens, Quercus robur, Eucalyptus globulus, Eucalyptus nitens and Populus spp.) and 14 genotypes were considered. A total of 430 trees were sampled in 61 plots to obtain 6 biomass components: leaves, twigs, thin branches, thick branches, bark and wood. Aboveground leafless biomass was pooled together for poplar. The concentrations of C, N, K, P, Ca, Mg, S, Fe, Mn, Cu, Zn and B were measured and the total biomass of each sampled tree and plot were determined. The data were analysed using boosted regression trees and conventional techniques. Results The main sources of variation in nutrient concentrations were biomass component > > genotype (species) ≈ age > tree diameter. The concentrations of Ca, Mg and K were most strongly affected by genotype and age. The concentrations of P, K, Ca, Mg, S and Cu in the wood component decreased with age, whereas C concentrations increased, with a trend to reach 50% in the older trees. In the SRF, interamerican poplar and P. trichocarpa genotypes were comparatively more efficient in terms of Ca and K nutrient assimilation index (NAI) (+ 65–85%) than eucalypts, mainly because leafless biomass can be removed. In the conventional eucalypt plantations (rotation 15 years), debarking the wood at logging (savings of 225% of Ca and 254% of Mg for E. globulus) or the use of selected genotypes (savings of 45% of P and 35% of Ca) will provide wood at a relatively lower nutrient cost. Considering all the E. globulus genotypes together, the management for pulp with removal of debarked wood shows NAI values well above (× 1.7–× 3.9) the ones found for poplar or eucalypt SRF and also higher (× 1.6–× 4.0) than the ones found for oak and birch managed in medium or long rotations. The annual rates of nutrient removal were low in the native broadleaved species but the rates of available soil nutrients removed were high as compared to poplar or eucalypts. Management of native broadleaved species should consider nutrient stability through selection of the biomass compartments removed. Conclusions The nutrient assimilation index is higher in poplar grown under short rotation forestry management than in the other systems considered. Nutrient management of fast growing eucalyptus plantations could be improved by selecting efficient genotypes and limiting removal of wood. The values of the nutrient assimilation index are lower in the natural stands of native broadleaved species than in the other systems considered
    corecore