77 research outputs found

    Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years

    Get PDF
    In order to predict the fate of biodiversity in a rapidly changing world, we must first understand how species adapt to new environmental conditions. The long-term evolutionary dynamics of species’ physiological tolerances to differing climatic regimes remain obscure. Here, we unite palaeontological and neontological data to analyse whether species’ environmental tolerances remain stable across 3 Myr of profound climatic changes using 10 phylogenetically, ecologically and developmentally diverse mollusc species from the Atlantic and Gulf Coastal Plains, USA. We additionally investigate whether these species’ upper and lower thermal tolerances are constrained across this interval. We find that these species’ environmental preferences are stable across the duration of their lifetimes, even when faced with significant environmental perturbations. The results suggest that species will respond to current and futurewarming either by altering distributions to track suitable habitat or, if the pace of change is too rapid, by going extinct. Our findings also support methods that project species’ present-day environmental requirements to future climatic landscapes to assess conservation risks

    Genesis of a Fungal Non-Self Recognition Repertoire

    Get PDF
    Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown. Fungi are able to form heterokaryons by fusion of somatic cells, and somatic non self-recognition is controlled by heterokaryon incompatibility loci (het loci). Herein, we have analyzed the evolutionary features of the het-d and het-e fungal allorecognition genes. In these het genes, allorecognition specificity is determined by a polymorphic WD-repeat domain. We found that het-d and het-e belong to a large gene family with 10 members that all share the WD-repeat domain and show that repeats of all members of the family undergo concerted evolution. It follows that repeat units are constantly exchanged both within and between members of the gene family. As a consequence, high mutation supply in the repeat domain is ensured due to the high total copy number of repeats. We then show that in each repeat four residues located at the protein/protein interaction surface of the WD-repeat domain are under positive diversifying selection. Diversification of het-d and het-e is thus ensured by high mutation supply, followed by reshuffling of the repeats and positive selection for favourable variants. We also propose that RIP, a fungal specific hypermutation process acting specifically on repeated sequences might further enhance mutation supply. The combination of these evolutionary mechanisms constitutes an original process for generating extensive polymorphism at loci that require rapid diversification

    Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization

    Get PDF
    Interest in the utilization of bioactive plant compounds in foods has increased due to their biochemical activities (antioxidant, antimicrobial, etc.), and as alternatives in the reduction of the use of high concentrations of chemical substances. However, some of these additives are hydrophobic, thus being harder to disperse into the food matrix, which is generally water-based. A good alternative is the use of low concentrations of these compounds as nanoemulsions. The objective of the present study was to develop oil-in-water nanoemulsions containing dedo-de-moça pepper extract for food applications. Research in the development of these nanoemulsions was carried out using a high-speed homogenizer, followed by a high-pressure homogenizer. The influence of the following parameters was assessed: type and concentration of surfactants, hidrophilic-lipophilic balance, lipid/aqueous phase ratio, surfactant/oil ratio, pepper extract composition in nanoemulsion, and processing conditions. Nanoemulsions were evaluated by environmental (centrifugal and thermal) and storage stabilities, characterized by average droplet size and -potential measurements, color, interfacial tension, atomic force, and cryo-scanning electron microscopy. Those with average droplet size between 132 ± 2.0 and 145 ± 1.0 nm were developed depending on working pressure and number of cycles; -potential was around 36.71 ± 0.62 mV and the best nanoemulsion was stable to centrifugation and most of the thermal stresses. Droplets were characterized with cryo-scanning electron microscopy as being spherical, homogeneous, and stable, and remained stable when stored at 4 °C and room temperature for over 120 days. The pepper nanoemulsion, developed in the present study, has potential applications in the food industry.The first author gratefully acknowledges the CNPq and CAPES (National Council for Scientific and Technological Development, Program Science without Boarder) for the BSWE^ PhD (Process 236877/2012-1) fellowship, and CAPES for the national PhD fellowship. The last author acknowledges the São Paulo Research Foundation (FAPESP) Brazil, for the grant (CEPID-FoRC, 2013/07914-8).info:eu-repo/semantics/publishedVersio

    Global cooling as a driver of diversification in a major marine clade

    Get PDF
    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems

    Tracing the Origin of the Fungal α1 Domain Places Its Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type Evolution

    Get PDF
    BACKGROUND: Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an α1 domain showing similarity to the Matα1p protein of Saccharomyces cerevisiae. DNA-binding HMG proteins are ubiquitous and well characterized. In contrast, α1 domain proteins have limited distribution and their evolutionary origin is obscure, precluding a complete understanding of mating-type evolution in Ascomycota. Although much work has focused on the role of the S. cerevisiae Matα1p protein as a transcription factor, it has not yet been placed in any of the large families of sequence-specific DNA-binding proteins. METHODOLOGY/PRINCIPAL FINDINGS: We present sequence comparisons, phylogenetic analyses, and in silico predictions of secondary and tertiary structures, which support our hypothesis that the α1 domain is related to the HMG domain. We have also characterized a new conserved motif in α1 proteins of Pezizomycotina. This motif is immediately adjacent to and downstream of the α1 domain and consists of a core sequence Y-[LMIF]-x(3)-G-[WL] embedded in a larger conserved motif. CONCLUSIONS/SIGNIFICANCE: Our data suggest that extant α1-box genes originated from an ancestral HMG gene, which confirms the current model of mating-type evolution within the fungal kingdom. We propose to incorporate α1 proteins in a new subclass of HMG proteins termed MATα_HMG

    Tracking a Medically Important Spider: Climate Change, Ecological Niche Modeling, and the Brown Recluse (Loxosceles reclusa)

    Get PDF
    Most spiders use venom to paralyze their prey and are commonly feared for their potential to cause injury to humans. In North America, one species in particular, Loxosceles reclusa (brown recluse spider, Sicariidae), causes the majority of necrotic wounds induced by the Araneae. However, its distributional limitations are poorly understood and, as a result, medical professionals routinely misdiagnose brown recluse bites outside endemic areas, confusing putative spider bites for other serious conditions. To address the issue of brown recluse distribution, we employ ecological niche modeling to investigate the present and future distributional potential of this species. We delineate range boundaries and demonstrate that under future climate change scenarios, the spider's distribution may expand northward, invading previously unaffected regions of the USA. At present, the spider's range is centered in the USA, from Kansas east to Kentucky and from southern Iowa south to Louisiana. Newly influenced areas may include parts of Nebraska, Minnesota, Wisconsin, Michigan, South Dakota, Ohio, and Pennsylvania. These results illustrate a potential negative consequence of climate change on humans and will aid medical professionals in proper bite identification/treatment, potentially reducing bite misdiagnoses

    Distinct Type of Transmission Barrier Revealed by Study of Multiple Prion Determinants of Rnq1

    Get PDF
    Prions are self-propagating protein conformations. Transmission of the prion state between non-identical proteins, e.g. between homologous proteins from different species, is frequently inefficient. Transmission barriers are attributed to sequence differences in prion proteins, but their underlying mechanisms are not clear. Here we use a yeast Rnq1/[PIN+]-based experimental system to explore the nature of transmission barriers. [PIN+], the prion form of Rnq1, is common in wild and laboratory yeast strains, where it facilitates the appearance of other prions. Rnq1's prion domain carries four discrete QN-rich regions. We start by showing that Rnq1 encompasses multiple prion determinants that can independently drive amyloid formation in vitro and transmit the [PIN+] prion state in vivo. Subsequent analysis of [PIN+] transmission between Rnq1 fragments with different sets of prion determinants established that (i) one common QN-rich region is required and usually sufficient for the transmission; (ii) despite identical sequences of the common QNs, such transmissions are impeded by barriers of different strength. Existence of transmission barriers in the absence of amino acid mismatches in transmitting regions indicates that in complex prion domains multiple prion determinants act cooperatively to attain the final prion conformation, and reveals transmission barriers determined by this cooperative fold
    • …
    corecore