3,175 research outputs found

    Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)

    Get PDF
    Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species

    The inevitable youthfulness of known high-redshift radio galaxies

    Full text link
    Radio galaxies can be seen out to very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio-galaxies must be seen when the lobes are less than 10^7 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result helps to explain many observed trends of radio-galaxy properties with redshift [(i) the `alignment effect' of optical emission along radio-jet axes, (ii) the increased distortion in radio structure, (iii) the decrease in physical sizes, (iv) the increase in radio depolarisation, and (v) the increase in dust emission] without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.Comment: To appear in Nature. 4 pages, 2 colour figures available on request. Also available at http://www-astro.physics.ox.ac.uk/~km

    Tailoring the atomic structure of graphene nanoribbons by STM lithography

    Full text link
    The practical realization of nano-scale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes only basic demonstration-devices have been realized by time-consuming processes. This is mainly due to the lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons (GNRs) and bent junctions with nanometer precision, well-defined widths and predetermined crystallographic orientations allowing us to fully engineer their electronic structure using scanning tunneling microscope (STM) lithography. The atomic structure and electronic properties of the ribbons have been investigated by STM and tunneling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based devices, is reported. This method avoids the difficulties of assembling nano-scale components and allows the realization of complete integrated circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres

    ABORAS: polarimetric, 10cm/s RV observations of the Sun as a star

    Get PDF
    This is the final version. Available from SPIE via the DOI in this recordSPIE Astronomical Telescopes + Instrumentation, 17 - 22 July 2022, Montréal, Québec, CanadaWe present a description of A dual-Beam polarimetric Robotic Aperture for the Sun (ABORAS), to serve as a Solar input with a dedicated Stokes V polarimeter for the HARPS3 high-resolution spectrograph. ABORAS has three main science drivers: trying to understand the physics behind stellar variability, tracking the long term stability of HARPS3, and serve as a benchmark for Earth-sized exoplanet detection with HARPS3 by injecting an Earth RV signal into the data. By design, ABORAS will (together with the HARPS3 instrument) be able to measure 10cm/s variations in RV of the integrated Solar disk and detect integrated magnetic field levels at sub 1 Gauss level through circularly polarized light.Swiss National Science FoundationKavli Institute for Cosmology, Cambridg

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint

    Large Scale Structure of the Universe

    Full text link
    Galaxies are not uniformly distributed in space. On large scales the Universe displays coherent structure, with galaxies residing in groups and clusters on scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space, known as voids, contain very few galaxies and span the volume in between these structures. This observed large scale structure depends both on cosmological parameters and on the formation and evolution of galaxies. Using the two-point correlation function, one can trace the dependence of large scale structure on galaxy properties such as luminosity, color, stellar mass, and track its evolution with redshift. Comparison of the observed galaxy clustering signatures with dark matter simulations allows one to model and understand the clustering of galaxies and their formation and evolution within their parent dark matter halos. Clustering measurements can determine the parent dark matter halo mass of a given galaxy population, connect observed galaxy populations at different epochs, and constrain cosmological parameters and galaxy evolution models. This chapter describes the methods used to measure the two-point correlation function in both redshift and real space, presents the current results of how the clustering amplitude depends on various galaxy properties, and discusses quantitative measurements of the structures of voids and filaments. The interpretation of these results with current theoretical models is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets, Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume editor W. C. Keel, v2 includes additional references, updated to match published versio

    Associations between Screen Time and Physical Activity among Spanish Adolescents

    Get PDF
    Excessive time in front of a single or several screens could explain a displacement of physical activity. The present study aimed at determining whether screen-time is associated with a reduced level of moderate to vigorous physical activity (MVPA) in Spanish adolescents living in favorable environmental conditions. or more to total screen-time showed a 64% (OR = 0.61, 95% CI, 0.44–0.86) increased risk of failing to achieve the recommended adolescent MVPA level. Participation in organized physical activities and sports competitions were more strongly associated with MVPA than screen-related behaviors.No single screen-related behavior explained the reduction of MVPA in adolescents. However, the total time accumulated through several screen-related behaviors was negatively associated with MVPA level in boys. This association could be due to lower availability of time for exercise as the time devoted to sedentary screen-time activities increases. Participation in organized physical activities seems to counteract the negative impact of excessive time in front of screens on physical activity

    Neurons of the Dentate Molecular Layer in the Rabbit Hippocampus

    Get PDF
    The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals’ life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections), eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population
    corecore