132 research outputs found

    Endostatin expression in a pancreatic cell line is modulated by a TNFα-dependent elastase

    Get PDF
    Endostatin, an inhibitor of angiogenesis, is a 20 kDa fragment of the basement membrane protein, collagen XVIII. The formation of endostatin relies upon the action of proteases on collagen XVIII. TNFα, produced by activated macrophages, is a multifunctional proinflammatory cytokine with known effects on endothelial function. We postulated that TNFα may modulate the activities of proteases and thus regulate endostatin formation in pancreatic cells. Collagen XVIII/endostatin mRNA was expressed in one pancreatic cell line, SUIT-2, but not in BxPc-3. The 20 kDa endostatin was found in the cell-conditioned medium of SUIT-2 cells. Precursor forms only were found in the cells. Exogenous endostatin was degraded by cellular lysates of SUIT-2 cells. Elastase activity was found in cell extracts but not the cell-conditioned media of SUIT-2 cells. Incubation of SUIT-2 cells with TNFα increased intracellular elastase activity and also increased secretion of endostatin into the medium. We conclude that endostatin is released by SUIT-2 cells and that increases in intracellular elastase, induced by TNFα, are correlated with increased secretion. Endostatin is however susceptible to degradation by intracellular proteases and if tissue injury accompanies inflammation, endostatin may be degraded, allowing angiogenesis to occur

    Corporate reputation in the spanish context: An interaction between reporting to stakeholders and industry.

    Get PDF
    ABSTRACT: The authors describe the intensity and orientation of the corporate social responsibility (CSR) reporting in four Spanish industries and explore the relationship that exists between both concepts and an independent measurement of reputation for CSR (CSRR). The results demonstrate that the CSR reporting is especially relevant and useful in the finance industry. Finance companies report significantly more CSR information than most industries in Spain, and this reporting is more closely linked to their CSRR than the CSR reporting of basic, consumer goods and services industries. Borra

    Thinking about Eating Food Activates Visual Cortex with Reduced Bilateral Cerebellar Activation in Females with Anorexia Nervosa: An fMRI Study

    Get PDF
    Background: Women with anorexia nervosa (AN) have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown. Methods: Functional magnetic resonance imaging (fMRI) examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN) and 24 age-matched controls (HC). Results: Group contrasts between HC and AN revealed reduced activation in AN in the bilateral cerebellar vermis, and increased activation in the right visual cortex. Preliminary comparisons between AN subtypes and healthy controls suggest differences in cortical and limbic regions. Conclusions: These preliminary data suggest that thinking about eating food shown in images increases visual and prefrontal cortical neural responses in females with AN, which may underlie cognitive biases towards food stimuli and ruminations about controlling food intake. Future studies are needed to explicitly test how thinking about eating activates restraint cognitions, specifically in those with restricting vs. binge-purging AN subtypes

    Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous Magnetic Resonance Imaging (MRI) studies of people with anorexia nervosa (AN) have shown differences in brain structure. This study aimed to provide preliminary extensions of this data by examining how different levels of appetitive restraint impact on brain volume.</p> <p>Methods</p> <p>Voxel based morphometry (VBM), corrected for total intracranial volume, age, BMI, years of education in 14 women with AN (8 RAN and 6 BPAN) and 21 women (HC) was performed. Correlations between brain volume and dietary restraint were done using Statistical Package for the Social Sciences (SPSS).</p> <p>Results</p> <p>Increased right dorsolateral prefrontal cortex (DLPFC) and reduced right anterior insular cortex, bilateral parahippocampal gyrus, left fusiform gyrus, left cerebellum and right posterior cingulate volumes in AN compared to HC. RAN compared to BPAN had reduced left orbitofrontal cortex, right anterior insular cortex, bilateral parahippocampal gyrus and left cerebellum. Age negatively correlated with right DLPFC volume in HC but not in AN; dietary restraint and BMI predicted 57% of variance in right DLPFC volume in AN.</p> <p>Conclusions</p> <p>In AN, brain volume differences were found in appetitive, somatosensory and top-down control brain regions. Differences in regional GMV may be linked to levels of appetitive restraint, but whether they are state or trait is unclear. Nevertheless, these discrete brain volume differences provide candidate brain regions for further structural and functional study in people with eating disorders.</p

    Methylphenidate Normalizes Fronto-Striatal Underactivation During Interference Inhibition in Medication-Naïve Boys with Attention-Deficit Hyperactivity Disorder

    Get PDF
    Youth with attention deficit hyperactivity disorder (ADHD) have deficits in interference inhibition, which can be improved with the indirect catecholamine agonist methylphenidate (MPH). Functional magnetic resonance imaging was used to investigate the effects of a single dose of MPH on brain activation during interference inhibition in medication-naïve ADHD boys. Medication-naïve boys with ADHD were scanned twice, in a randomized, double-blind design, under either a single clinical dose of MPH or placebo, while performing a Simon task that measures interference inhibition and controls for the oddball effect of low-frequency appearance of incongruent trials. Brain activation was compared within patients under either drug condition. To test for potential normalization effects of MPH, brain activation in ADHD patients under either drug condition was compared with that of healthy age-matched comparison boys. During incongruent trials compared with congruent–oddball trials, boys with ADHD under placebo relative to controls showed reduced brain activation in typical areas of interference inhibition, including right inferior prefrontal cortex, left striatum and thalamus, mid-cingulate/supplementary motor area, and left superior temporal lobe. MPH relative to placebo upregulated brain activation in right inferior prefrontal and premotor cortices. Under the MPH condition, patients relative to controls no longer showed the reduced activation in right inferior prefrontal and striato-thalamic regions. Effect size comparison, furthermore, showed that these normalization effects were significant. MPH significantly normalized the fronto-striatal underfunctioning in ADHD patients relative to controls during interference inhibition, but did not affect medial frontal or temporal dysfunction. MPH therefore appears to have a region-specific upregulation effect on fronto-striatal activation

    Visuospatial working memory in children and adolescents with 22q11.2 deletion syndrome; an fMRI study

    Get PDF
    22q11.2 deletion syndrome (22q11DS) is a genetic disorder associated with a microdeletion of chromosome 22q11. In addition to high rates of neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder, children with 22q11DS have a specific neuropsychological profile with particular deficits in visuospatial and working memory. However, the neurobiological substrate underlying these deficits is poorly understood. We investigated brain function during a visuospatial working memory (SWM) task in eight children with 22q11DS and 13 healthy controls, using fMRI. Both groups showed task-related activation in dorsolateral prefrontal cortex (DLPFC) and bilateral parietal association cortices. Controls activated parietal and occipital regions significantly more than those with 22q11DS but there was no significant between-group difference in DLPFC. In addition, while controls had a significant age-related increase in the activation of posterior brain regions and an age-related decrease in anterior regions, the 22q11DS children showed the opposite pattern. Genetically determined differences in the development of specific brain systems may underpin the cognitive deficits in 22q11DS, and may contribute to the later development of neuropsychiatric disorders

    Interplay of Nkx3.2, Sox9 and Pax3 Regulates Chondrogenic Differentiation of Muscle Progenitor Cells

    Get PDF
    Muscle satellite cells make up a stem cell population that is capable of differentiating into myocytes and contributing to muscle regeneration upon injury. In this work we investigate the mechanism by which these muscle progenitor cells adopt an alternative cell fate, the cartilage fate. We show that chick muscle satellite cells that normally would undergo myogenesis can be converted to express cartilage matrix proteins in vitro when cultured in chondrogenic medium containing TGFß3 or BMP2. In the meantime, the myogenic program is repressed, suggesting that muscle satellite cells have undergone chondrogenic differentiation. Furthermore, ectopic expression of the myogenic factor Pax3 prevents chondrogenesis in these cells, while chondrogenic factors Nkx3.2 and Sox9 act downstream of TGFß or BMP2 to promote this cell fate transition. We found that Nkx3.2 and Sox9 repress the activity of the Pax3 promoter and that Nkx3.2 acts as a transcriptional repressor in this process. Importantly, a reverse function mutant of Nkx3.2 blocks the ability of Sox9 to both inhibit myogenesis and induce chondrogenesis, suggesting that Nkx3.2 is required for Sox9 to promote chondrogenic differentiation in satellite cells. Finally, we found that in an in vivo mouse model of fracture healing where muscle progenitor cells were lineage-traced, Nkx3.2 and Sox9 are significantly upregulated while Pax3 is significantly downregulated in the muscle progenitor cells that give rise to chondrocytes during fracture repair. Thus our in vitro and in vivo analyses suggest that the balance of Pax3, Nkx3.2 and Sox9 may act as a molecular switch during the chondrogenic differentiation of muscle progenitor cells, which may be important for fracture healing
    • …
    corecore