2,532 research outputs found
Do adults with high functioning autism or Asperger Syndrome differ in empathy and emotion recognition?
The present study examined whether adults with high functioning autism (HFA) showed greater difficulties in (i) their self-reported ability to empathise with others and/or (ii) their ability to read mental states in others’ eyes than adults with Asperger syndrome (AS). The Empathy Quotient (EQ) and ‘Reading the Mind in the Eyes’ Test (Eyes Test) were compared in 43 adults with AS and 43 adults with HFA. No significant difference was observed on EQ score between groups, while adults with AS performed significantly better on the Eyes Test than those with HFA. This suggests that adults with HFA may need more support, particularly in mentalizing and complex emotion recognition, and raises questions about the existence of subgroups within autism spectrum conditions
Are autistic traits measured equivalently in individuals with and without an Autism Spectrum Disorder?:An invariance analysis of the Autism Spectrum Quotient Short Form
It is common to administer measures of autistic traits to those without autism spectrum disorders (ASDs) with, for example, the aim of understanding autistic personality characteristics in non-autistic individuals. Little research has examined the extent to which measures of autistic traits actually measure the same traits in the same way across those with and without an ASD. We addressed this question using a multi-group confirmatory factor invariance analysis of the Autism Quotient Short Form (AQ-S: Hoekstra et al. in J Autism Dev Disord 41(5):589-596, 2011) across those with (n = 148) and without (n = 168) ASD. Metric variance (equality of factor loadings), but not scalar invariance (equality of thresholds), held suggesting that the AQ-S measures the same latent traits in both groups, but with a bias in the manner in which trait levels are estimated. We, therefore, argue that the AQ-S can be used to investigate possible causes and consequences of autistic traits in both groups separately, but caution is due when combining or comparing levels of autistic traits across the two group
Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies.
PURPOSE: Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity. METHODS: Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chloride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxygen partial pressure (PtO2) was measured in the ischemic tissue during both control and NBO conditions. RESULTS: As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2. CONCLUSIONS: Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications of FMISO imaging
Recommended from our members
Brain hypoxia mapping in acute stroke: Back-to-back T2′ MR versus 18F-fluoromisonidazole PET in rodents
Background
Mapping the hypoxic brain in acute ischemic stroke has considerable potential for both diagnosis and treatment monitoring. PET using (18)F-fluoro-misonidazole (FMISO) is the reference method; however, it lacks clinical accessibility and involves radiation exposure. MR-based T2' mapping may identify tissue hypoxia and holds clinical potential. However, its validation against FMISO imaging is lacking. Here we implemented back-to-back FMISO-PET and T2' MR in rodents subjected to acute middle cerebral artery occlusion. For direct clinical relevance, regions of interest delineating reduced T2' signal areas were manually drawn.
Methods
Wistar rats were subjected to filament middle cerebral artery occlusion, immediately followed by intravenous FMISO injection. Multi-echo T2 and T2* sequences were acquired twice during FMISO brain uptake, interleaved with diffusion-weighted imaging. Perfusion-weighted MR was also acquired whenever feasible. Immediately following MR, PET data reflecting the history of FMISO brain uptake during MR acquisition were acquired. T2' maps were generated voxel-wise from T2 and T2*. Two raters independently drew T2' lesion regions of interest. FMISO uptake and perfusion data were obtained within T2' consensus regions of interest, and their overlap with the automatically generated FMISO lesion and apparent diffusion coefficient lesion regions of interest was computed.
Results
As predicted, consensus T2' lesion regions of interest exhibited high FMISO uptake as well as substantial overlap with the FMISO lesion and significant hypoperfusion, but only small overlap with the apparent diffusion coefficient lesion. Overlap of the T2' lesion regions of interest between the two raters was ∼50%.
Conclusions
This study provides formal validation of T2' to map non-core hypoxic tissue in acute stroke. T2' lesion delineation reproducibility was suboptimal, reflecting unclear lesion borders.This study was funded by an EU Grant (EUSTROKE Health-F2-2008-2022131). DJW was funded by an MRC collaborative grant (G0600986), RM by the NIHR Cambridge Biomedical Research Centre, and UJK by a fellowship from the Deutsche Forschungsgemeinschaft (Je 598/1-1)
Electrophysiological Evidence of Atypical Spatial Attention in Those with a High Level of Self-reported Autistic Traits
Selective attention is atypical in individuals with autism spectrum conditions. Evidence suggests this is also the case for those with high levels of autistic traits. Here we investigated the neural basis of spatial attention in those with high and low levels of self-reported autistic traits via analysis of ERP deflections associated with covert attention, target selection and distractor suppression (the N2pc, NT and PD). Larger N2pc and smaller PD amplitude was observed in those with high levels of autistic traits. These data provide neural evidence for differences in spatial attention, specifically, reduced distractor suppression in those with high levels of autistic traits, and may provide insight into the experience of perceptual overload often reported by individuals on the autism spectrum
Precursors to social and communication difficulties in infants at-risk for autism: gaze following and attentional engagement
Whilst joint attention (JA) impairments in autism have been widely studied, little is known about the early development of gaze following, a precursor to establishing JA. We employed eye-tracking to record gaze following longitudinally in infants with and without a family history of autism spectrum disorder (ASD) at 7 and 13 months. No group difference was found between at-risk and low-risk infants in gaze following behaviour at either age. However, despite following gaze successfully at 13 months, at-risk infants with later emerging socio-communication difficulties (both those with ASD and atypical development at 36 months of age) allocated less attention to the congruent object compared to typically developing at-risk siblings and low-risk controls. The findings suggest that the subtle emergence of difficulties in JA in infancy may be related to ASD and other atypical outcomes
Protein Recognition by Short Peptide Reversible Inhibitors of the Chromatin-Modifying LSD1/CoREST Lysine Demethylase.
The combinatorial assembly of protein complexes is at the heart of chromatin biology. Lysine demethylase LSD1(KDM1A)/CoREST beautifully exemplifies this concept. The active site of the enzyme tightly associates to the N-terminal domain of transcription factors of the SNAIL1 family, which therefore can competitively inhibit the binding of the N-terminal tail of the histone substrate. Our enzymatic, crystallographic, spectroscopic, and computational studies reveal that LSD1/CoREST can bind to a hexapeptide derived from the SNAIL sequence through recognition of a positively charged α-helical turn that forms upon binding to the enzyme. Variations in sequence and length of this six amino acid ligand modulate affinities enabling the same binding site to differentially interact with proteins that exert distinct biological functions. The discovered short peptide inhibitors exhibit antiproliferative activities and lay the foundation for the development of peptidomimetic small molecule inhibitors of LSD1
Sensory Symptom Profiles and Co-Morbidities in Painful Radiculopathy
Painful radiculopathies (RAD) and classical neuropathic pain syndromes (painful diabetic polyneuropathy, postherpetic neuralgia) show differences how the patients express their sensory perceptions. Furthermore, several clinical trials with neuropathic pain medications failed in painful radiculopathy. Epidemiological and clinical data of 2094 patients with painful radiculopathy were collected within a cross sectional survey (painDETECT) to describe demographic data and co-morbidities and to detect characteristic sensory abnormalities in patients with RAD and compare them with other neuropathic pain syndromes. Common co-morbidities in neuropathic pain (depression, sleep disturbance, anxiety) do not differ considerably between the three conditions. Compared to other neuropathic pain syndromes touch-evoked allodynia and thermal hyperalgesia are relatively uncommon in RAD. One distinct sensory symptom pattern (sensory profile), i.e., severe painful attacks and pressure induced pain in combination with mild spontaneous pain, mild mechanical allodynia and thermal hyperalgesia, was found to be characteristic for RAD. Despite similarities in sensory symptoms there are two important differences between RAD and other neuropathic pain disorders: (1) The paucity of mechanical allodynia and thermal hyperalgesia might be explained by the fact that the site of the nerve lesion in RAD is often located proximal to the dorsal root ganglion. (2) The distinct sensory profile found in RAD might be explained by compression-induced ectopic discharges from a dorsal root and not necessarily by nerve damage. These differences in pathogenesis might explain why medications effective in DPN and PHN failed to demonstrate efficacy in RAD
Low Fidelity Imitation of Atypical Biological Kinematics in Autism Spectrum Disorders Is Modulated by Self-Generated Selective Attention.
We examined whether adults with autism had difficulty imitating atypical biological kinematics. To reduce the impact that higher-order processes have on imitation we used a non-human agent model to control social attention, and removed end-state target goals in half of the trials to minimise goal-directed attention. Findings showed that only neurotypical adults imitated atypical biological kinematics. Adults with autism did, however, become significantly more accurate at imitating movement time. This confirmed they engaged in the task, and that sensorimotor adaptation was self-regulated. The attentional bias to movement time suggests the attenuation in imitating kinematics might be a compensatory strategy due to deficits in lower-level visuomotor processes associated with self-other mapping, or selective attention modulated the processes that represent biological kinematics
The plight of the sense-making ape
This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception
- …