334 research outputs found

    Detection and identification of Criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs: comparison between experimental measurements and theoretical calculations

    Get PDF
    Ozonolysis of alkenes is a key reaction in the atmosphere, playing an important role in determining the oxidising capacity of the atmosphere and acting as a source of compounds that can contribute to local photochemical “smog”. The reaction products of the initial step of alkene-ozonolysis are Criegee intermediates (CIs), which have for many decades eluded direct experimental detection because of their very short lifetime. We use an innovative experimental technique, stabilisation of CIs with spin traps and analysis with proton transfer reaction mass spectrometry, to measure the gas phase concentration of a series of CIs formed from ozonolysis of a range of both biogenic and anthropogenic alkenes in flow tube experiments. Density functional theory (DFT) calculations were used to assess the stability of the CI-spin trap adducts and showed that the reaction of the investigated CIs with the spin trap occurs very rapidly except for the large β-pinene CI. Our measurement method was used successfully to measure all the expected CIs, emphasising that this new technique is applicable to a wide range of CIs with different molecular structures previously unidentified experimentally. In addition, for the first time it was possible to study CIs simultaneously in an even more complex reaction system consisting of more than one olefinic precursor. Comparison between our new experimental measurements, calculations of stability of the CI-spin trap adducts and results from numerical modelling, using the master chemical mechanism (MCM), showed that our new method can be used for quantification of CIs produced in situ in laboratory experiments.This work was funded by the European Research Council (ERC starting grant 279405) and NERC (NE/K008218/1). ATA thanks NERC for funding through NCAS

    A practical guide to automating fluorine-18 PET radiochemistry using commercially available cassette-based platforms

    Get PDF
    The automation of positron emission tomography (PET) radiochemistry using cassette-based automated radiosynthesis platforms is an essential component of clinical translation for the vast majority of 18F-based radiopharmaceuticals. The technology is widely adopted by good manufacturing practice (GMP) compliant radiopharmaceutical production facilities and research institutions developing novel tracers for clinical studies. Despite automation being fundamental to clinical translation, educational resources which introduce this branch of radiochemistry to the uninitiated are limited. Publications featuring automation assume previous experience of using these platforms and therefore, the detail they provide may not be sufficient for a novice user. In this Tutorial Account, we aim to bridge this knowledge gap and provide a resource for efficient automation for radiochemists across all levels of experience

    Use of non-Gaussian time-of-flight kernels for image reconstruction of Monte Carlo simulated data of ultra-fast PET scanners

    Get PDF
    Introduction: Time-of-flight (TOF) positron emission tomography (PET) scanners can provide significant benefits by improving the noise properties of reconstructed images. In order to achieve this, the timing response of the scanner needs to be modelled as part of the reconstruction process. This is currently achieved using Gaussian TOF kernels. However, the timing measurements do not necessarily follow a Gaussian distribution. In ultra-fast timing resolutions, the depth of interaction of the γ-photon and the photon travel spread (PTS) in the crystal volume become increasingly significant factors for the timing performance. The PTS of a single photon can be approximated better by a truncated exponential distribution. Therefore, we computed the corresponding TOF kernel as a modified Laplace distribution for long crystals. The obtained (CTR) kernels could be more appropriate to model the joint probability of the two in-coincidenceγ-photons. In this paper, we investigate the impact of using a CTR kernel vs. Gaussian kernels in TOF reconstruction using Monte Carlo generated data. Materials and methods: The geometry and physics of a PET scanner with two timing configurations, (a) idealised timing resolution, in which only the PTS contributed in the CTR, and (b) with a range of ultra-fast timings, were simulated. In order to assess the role of the crystal thickness, different crystal lengths were considered. The evaluation took place in terms of Kullback–Leibler (K-L) distance between the proposed model and the simulated timing response, contrast recovery (CRC) and spatial resolution. The reconstructions were performed using STIR image reconstruction toolbox. Results: Results for the idealised scanner showed that the CTR kernel was in excellent agreement with the simulated time differences. In terms of K-L distance outperformed the a fitted normal distribution for all tested crystal sizes. In the case of the ultra-fast configurations, a convolution kernel between the CTR and a Gaussian showed the best agreement with the simulated data below 40 ps timing resolution. In terms of CRC, the CTR kernel demonstrated improvements, with values that ranged up to 3.8% better CRC for the thickest crystal. In terms of spatial resolution, evaluated at the 60th iteration, the use of CTR kernel showed a modest improvement of the peek-to-valley ratios up to 1% for the 10-mm crystal, while for larger crystals, a clear trend was not observed. In addition, we showed that edge artefacts can appear in the reconstructed images when the timing kernel used for the reconstruction is not carefully optimised. Further iterations, can help improve the edge artefacts

    Pain assessment for people with dementia: a systematic review of systematic reviews of pain assessment tools.

    Get PDF
    BACKGROUND: There is evidence of under-detection and poor management of pain in patients with dementia, in both long-term and acute care. Accurate assessment of pain in people with dementia is challenging and pain assessment tools have received considerable attention over the years, with an increasing number of tools made available. Systematic reviews on the evidence of their validity and utility mostly compare different sets of tools. This review of systematic reviews analyses and summarises evidence concerning the psychometric properties and clinical utility of pain assessment tools in adults with dementia or cognitive impairment. METHODS: We searched for systematic reviews of pain assessment tools providing evidence of reliability, validity and clinical utility. Two reviewers independently assessed each review and extracted data from them, with a third reviewer mediating when consensus was not reached. Analysis of the data was carried out collaboratively. The reviews were synthesised using a narrative synthesis approach. RESULTS: We retrieved 441 potentially eligible reviews, 23 met the criteria for inclusion and 8 provided data for extraction. Each review evaluated between 8 and 13 tools, in aggregate providing evidence on a total of 28 tools. The quality of the reviews varied and the reporting often lacked sufficient methodological detail for quality assessment. The 28 tools appear to have been studied in a variety of settings and with varied types of patients. The reviews identified several methodological limitations across the original studies. The lack of a 'gold standard' significantly hinders the evaluation of tools' validity. Most importantly, the samples were small providing limited evidence for use of any of the tools across settings or populations. CONCLUSIONS: There are a considerable number of pain assessment tools available for use with the elderly cognitive impaired population. However there is limited evidence about their reliability, validity and clinical utility. On the basis of this review no one tool can be recommended given the existing evidence

    IUPAC specification for the FAIR management of spectroscopic data in chemistry (IUPAC FAIRSpec) - guiding principles

    Get PDF
    set of guiding principles for the development of a standard for FAIR management of spectroscopic data are outlined and discussed. The principles form the basis for future recommendations of IUPAC Project 2019-031-1-024 specifying a detailed data model and metadata schema for describing the contents of an “IUPAC FAIRData Collection” and the organization of digital objects within that collection. Foremost among the recommendations will be a specification for an “IUPAC FAIRData Finding Aid” that describes the collection in such a way as to optimize the findability, accessibility, interoperability, and reusability of its contents. Results of an analysis of data provided by an American Chemical Society Publications pilot study are discussed in relation to potential workflows that might be used in implementing the “IUPAC FAIRSpec” standard based on these principles

    Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study.

    Get PDF
    The syndrome of fever is a commonly presenting complaint among persons seeking healthcare in low-resource areas, yet the public health community has not approached fever in a comprehensive manner. In many areas, malaria is over-diagnosed, and patients without malaria have poor outcomes. We prospectively studied a cohort of 870 pediatric and adult febrile admissions to two hospitals in northern Tanzania over the period of one year using conventional standard diagnostic tests to establish fever etiology. Malaria was the clinical diagnosis for 528 (60.7%), but was the actual cause of fever in only 14 (1.6%). By contrast, bacterial, mycobacterial, and fungal bloodstream infections accounted for 85 (9.8%), 14 (1.6%), and 25 (2.9%) febrile admissions, respectively. Acute bacterial zoonoses were identified among 118 (26.2%) of febrile admissions; 16 (13.6%) had brucellosis, 40 (33.9%) leptospirosis, 24 (20.3%) had Q fever, 36 (30.5%) had spotted fever group rickettsioses, and 2 (1.8%) had typhus group rickettsioses. In addition, 55 (7.9%) participants had a confirmed acute arbovirus infection, all due to chikungunya. No patient had a bacterial zoonosis or an arbovirus infection included in the admission differential diagnosis. Malaria was uncommon and over-diagnosed, whereas invasive infections were underappreciated. Bacterial zoonoses and arbovirus infections were highly prevalent yet overlooked. An integrated approach to the syndrome of fever in resource-limited areas is needed to improve patient outcomes and to rationally target disease control efforts

    Cell proliferation detected using [18F]FLT PET/CT as an early marker of abdominal aortic aneurysm

    Get PDF
    Background: Abdominal aortic aneurysm (AAA) is a focal aortic dilatation progressing towards rupture. Non-invasive AAA-associated cell proliferation biomarkers are not yet established. We investigated the feasibility of the cell proliferation radiotracer, fluorine-18-fluorothymidine ([18F]FLT) with positron emission tomography/computed tomography (PET/CT) in a progressive pre-clinical AAA model (angiotensin II, AngII infusion). Methods and Results: Fourteen-week-old apolipoprotein E-knockout (ApoE−/−) mice received saline or AngII via osmotic mini-pumps for 14 (n = 7 and 5, respectively) or 28 (n = 3 and 4, respectively) days and underwent 90-minute dynamic [18F]FLT PET/CT. Organs were harvested from independent cohorts for gamma counting, ultrasound scanning, and western blotting. [18F]FLT uptake was significantly greater in 14- (n = 5) and 28-day (n = 3) AAA than in saline control aortae (n = 5) (P < 0.001), which reduced between days 14 and 28. Whole-organ gamma counting confirmed greater [18F]FLT uptake in 14-day AAA (n = 9) compared to saline-infused aortae (n = 4) (P < 0.05), correlating positively with aortic volume (r = 0.71, P < 0.01). Fourteen-day AAA tissue showed increased expression of thymidine kinase-1, equilibrative nucleoside transporter (ENT)-1, ENT-2, concentrative nucleoside transporter (CNT)-1, and CNT-3 than 28-day AAA and saline control tissues (n = 3 each) (all P < 0.001). Conclusions: [18F]FLT uptake is increased during the active growth phase of the AAA model compared to saline control mice and late-stage AAA

    Inhibitory Control Predicts Grammatical Ability

    Get PDF
    We present evidence that individual variation in grammatical ability can be predicted by individual variation in inhibitory control. We tested 81 5-year-olds using two classic tests from linguistics and psychology (Past Tense and the Stroop). Inhibitory control was a better predicator of grammatical ability than either vocabulary or age. Our explanation is that giving the correct response in both tests requires using a common cognitive capacity to inhibit unwanted competition. The implications are that understanding the developmental trajectory of language acquisition can benefit from integrating the developmental trajectory of non-linguistic faculties, such as executive control

    Longitudinal In Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice

    Get PDF
    Retinal ganglion cells (RGCs) die in sight-threatening eye diseases. Imaging RGCs in humans is not currently possible and proof of principle in experimental models is fundamental for future development. Our objective was to quantify RGC density and retinal thickness following optic nerve transection in transgenic mice expressing cyan fluorescent protein (CFP) under control of the Thy1 promoter, expressed by RGCs and other neurons.A modified confocal scanning laser ophthalmoscopy (CSLO)/spectral-domain optical coherence tomography (SD-OCT) camera was used to image and quantify CFP+ cells in mice from the B6.Cg-Tg(Thy1-CFP)23Jrs/J line. SD-OCT circle (1 B-scan), raster (37 B-scans) and radial (24 B-scans) scans of the retina were also obtained. CSLO was performed at baseline (n = 11) and 3 (n = 11), 5 (n = 4), 7 (n = 10), 10 (n = 6), 14 (n = 7) and 21 (n = 5) days post-transection, while SD-OCT was performed at baseline and 7, 14 and 35 days (n = 9) post-transection. Longitudinal change in CFP+ cell density and retinal thickness were computed. Compared to baseline, the mean (SD) percentage CFP+ cells remaining at 3, 5, 7, 10, 14 and 21 days post-transection was 86 (9)%, 63 (11)%, 45 (11)%, 31 (9)%, 20 (9)% and 8 (4)%, respectively. Compared to baseline, the mean (SD) retinal thickness at 7 days post-transection was 97 (3)%, 98 (2)% and 97 (4)% for the circle, raster and radial scans, respectively. The corresponding figures at 14 and 35 days post-transection were 96 (3)%, 97 (2)% and 95 (3)%; and 93 (3)%, 94 (3)% and 92 (3)%.Longitudinal imaging showed an exponential decline in CFP+ cell density and a small (≤8%) reduction in SD-OCT measured retinal thickness post-transection. SD-OCT is a promising tool for detecting structural changes in experimental optic neuropathy. These results represent an important step towards translation for clinical use
    corecore