15,864 research outputs found
Gauge-Invariant Coordinates on Gauge-Theory Orbit Space
A gauge-invariant field is found which describes physical configurations,
i.e. gauge orbits, of non-Abelian gauge theories. This is accomplished with
non-Abelian generalizations of the Poincare'-Hodge formula for one-forms. In a
particular sense, the new field is dual to the gauge field. Using this field as
a coordinate, the metric and intrinsic curvature are discussed for Yang-Mills
orbit space for the (2+1)- and (3+1)-dimensional cases. The sectional, Ricci
and scalar curvatures are all formally non-negative. An expression for the new
field in terms of the Yang-Mills connection is found in 2+1 dimensions. The
measure on Schroedinger wave functionals is found in both 2+1 and 3+1
dimensions; in the former case, it resembles Karabali, Kim and Nair's measure.
We briefly discuss the form of the Hamiltonian in terms of the dual field and
comment on how this is relevant to the mass gap for both the (2+1)- and
(3+1)-dimensional cases.Comment: Typos corrected, more about the non-Abelian decomposition and inner
products, more discussion of the mass gap in 3+1 dimensions. Now 23 page
Comparison of stroke volume measurement between non-invasive bioreactance and esophageal Doppler in patients undergoing major abdominal-pelvic surgery
PURPOSE:
Bioreactance is a non-invasive technology for measuring stroke volume (SV) in the operating room and critical care setting. We evaluated how the NICOM® bioreactance device performed against the CardioQ® esophageal Doppler monitor in patients undergoing major abdominal–pelvic surgery, focusing on the effect of different hemodynamic interventions.
METHODS:
SVNICOM and SVODM were simultaneously measured intraoperatively, including before and after interventions including fluid challenge, vasopressor boluses, peritoneal gas insufflation/removal, and Trendelenburg/reverse Trendelenburg patient positioning.
RESULTS:
A total of 768 values were collected from 21 patients. Pre- and post-intervention measures were recorded on 155 occasions. Bland–Altman analysis revealed a bias of 8.6 ml and poor precision with wide limits of agreement (54 and −37 ml) and a percentage error of 50.6%. No improvement in precision was detected after taking into account repeated measurements for each patient (bias: 8 ml; limits of agreement: 74 and −59 ml). Concordance between changes in SVNICOM and SVODM before and after interventions was also poor: 78.7% (all measures), 82.4% (after vasopressor administration), and 74.3% (after fluid challenge). Using Doppler SV as the reference technique, the area under the receiver operating characteristic curve assessing the ability of the NICOM device to predict fluid responsiveness was 0.81 (0.7–0.9).
CONCLUSIONS:
In patients undergoing major abdomino-pelvic surgery, SV values obtained by NICOM showed neither clinically or statistically acceptable agreement with those obtained by esophageal Doppler. Although, in the setting of this study, bioreactance technology cannot reliably replace esophageal Doppler monitoring, its accuracy for predicting fluid responsiveness was higher, up to approximately 80%
Schlieren textures in biaxial nematic liquid crystals
The optical textures exhibited by the mesophases of three compounds, all of which are reported to show the biaxial nematic phase, have been examined. The textures are of the usual nematic schlieren type, except that they consist entirely of disclinations of strength |s| = 1/2. It is suggested that the absence of disclinations of unit strength is diagnostic of biaxiality
Cooperation across multiple game theoretical paradigms is increased by fear more than anger in selfish individuals.
Cooperative decisions are well predicted by stable individual differences in social values but it remains unclear how they may be modulated by emotions such as fear and anger. Moving beyond specific decision paradigms, we used a suite of economic games and investigated how experimental inductions of fear or anger affect latent factors of decision making in individuals with selfish or prosocial value orientations. We found that, relative to experimentally induced anger, induced fear elicited higher scores on a cooperation factor, and that this effect was entirely driven by selfish participants. In fact, induced fear brought selfish individuals to cooperate similarly to prosocial individuals, possibly as a (selfish) mean to seek protection in others. These results suggest that two basic threat-related emotions, fear and anger, differentially affect a generalized form of cooperation and that this effect is buffered by prosocial value orientation
Optical binding mechanisms: a conceptual model for Gaussian beam traps
Optical binding interactions between laser-trapped spherical microparticles
are familiar in a wide range of trapping configurations. Recently it has been
demonstrated that these experiments can be accurately modeled using Mie
scattering or coupled dipole models. This can help confirm the physical
phenomena underlying the inter-particle interactions, but does not necessarily
develop a conceptual understanding of the effects that can lead to future
predictions. Here we interpret results from a Mie scattering model to obtain a
physical description which predict the behavior and trends for chains of
trapped particles in Gaussian beam traps. In particular, it describes the
non-uniform particle spacing and how it changes with the number of particles.
We go further than simply \emph{demonstrating} agreement, by showing that the
mechanisms ``hidden'' within a mathematically and computationally demanding Mie
scattering description can be explained in easily-understood terms.Comment: Preprint of manuscript submitted to Optics Expres
Garbage collection auto-tuning for Java MapReduce on Multi-Cores
MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present MRJ, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a four-core, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that Java runtime garbage collection has on the performance and scalability of MRJ. We propose the use of memory management auto-tuning techniques based on machine learning. With our auto-tuning approach, we are able to achieve MRJ performance within 10% of optimal on 75% of our benchmark tests
Single ion heat engine with maximum efficiency at maximum power
We propose an experimental scheme to realize a nano heat engine with a single
ion. An Otto cycle may be implemented by confining the ion in a linear Paul
trap with tapered geometry and coupling it to engineered laser reservoirs. The
quantum efficiency at maximum power is analytically determined in various
regimes. Moreover, Monte Carlo simulations of the engine are performed that
demonstrate its feasibility and its ability to operate at maximum efficiency of
30% under realistic conditions.Comment: 5 pages, 3 figure
Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes
Single-walled carbon nanotubes are strongly correlated systems with large
Coulomb repulsion between two electrons occupying the same orbital.
Within a molecular Hamiltonian appropriate for correlated -electron
systems, we show that optical excitations polarized parallel to the nanotube
axes in the so-called metallic single-walled carbon nanotubes are to excitons.
Our calculated absolute exciton energies in twelve different metallic
single-walled carbon nanotubes, with diameters in the range 0.8 - 1.4 nm, are
in nearly quantitative agreement with experimental results. We have also
calculated the absorption spectrum for the (21,21) single-walled carbon
nanotube in the E region. Our calculated spectrum gives an excellent fit
to the experimental absorption spectrum. In all cases our calculated exciton
binding energies are only slightly smaller than those of semiconducting
nanotubes with comparable diameters, in contradiction to results obtained
within the {\it ab initio} approach, which predicts much smaller binding
energies. We ascribe this difference to the difficulty of determining the
behavior of systems with strong on-site Coulomb interactions within theories
based on the density functional approach. As in the semiconducting nanotubes we
predict in the metallic nanotubes a two-photon exciton above the lowest
longitudinally polarized exciton that can be detected by ultrafast pump-probe
spectroscopy. We also predict a subgap absorption polarized perpendicular to
the nanotube axes below the lowest longitudinal exciton, blueshifted from the
exact midgap by electron-electron interactions
- …