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We propose an experimental scheme to realize a nanoheat engine with a single ion. An Otto cycle may

be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to

engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in

various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its

feasibility and its ability to operate at a maximum efficiency of 30% under realistic conditions.
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Miniaturization has lead to the development of increas-
ingly smaller devices. This ongoing size reduction from the
macroscale to the nanoscale is approaching the ultimate
limit, given by the atomic nature of matter [1]. Prominent
macrodevices are heat engines that convert thermal energy
into mechanical work, and hence motion [2]. A fundamen-
tal question is whether these machines can be scaled down
to the single particle level, while retaining the same work-
ing principles as, for instance, those of a car engine. It is
interesting to note in this context that biological molecular
motors are based on completely different mechanisms
that exploit the constructive role of thermal fluctuations
[3,4]. At the nanoscale, quantum properties become impor-
tant and have thus to be fully taken into account. Quantum
heat engines have been the subject of extensive theoretical
studies in the last fifty years [5–14]. However, while clas-
sical micro heat engines have been fabricated, using opto-
mechanical [15], micro-electromechanical [16–18], and
colloidal systems [19], to date no quantum heat engine has
been built.

In this Letter, we take a step towards that goal by propos-
ing a single ion heat engine using a linear Paul trap.
Specifically, we present a scheme which has the potential
to implement a quantum Otto cycle using currently avail-
able state-of-the-art ion-trap technology. Laser-cooled ions
in linear Paul traps are quantum systems with remarkable
properties [20]: they offer an unprecedented degree of
preparation and control of their parameters, permit their
cooling to the ground state, and allow the coupling to
engineered reservoirs [21]. For these reasons, they have
played a prominent role in the experimental study of quan-
tum computation and information processing applications
[22,23]. They are also invaluable tools for the investigation
of quantum thermodynamics [24]. The quantum Otto cycle
for a harmonic oscillator is a quantum generalization of the
common four-stroke car engine and a paradigm for ther-
modynamic quantum devices [25–27]. It consists of two

isentropic processes during which the frequency of the
oscillator (the trap frequency) is varied, and of two iso-
choric processes, that correspond to a change of tempera-
ture at constant frequency, see Fig. 1(a). In the present
proposal, we simulate the Otto cycle by confining a single
ion in a novel trap geometry with an asymmetric electrode
configuration [see Fig. 1(c)] and coupling it alternatingly
to two engineered laser reservoirs. As for all realistic
machines, this Otto engine runs in finite time and has thus

FIG. 1 (color online). (a) Energy-frequency diagram of the
Otto cycle for the radial mode of the ion. The continuous line
represents the ideal process, while the dots show the results of
the Monte Carlo simulations. (b) The pictograms illustrate the
four individual strokes of the cycle for the radial state.
(c) Geometry of the tapered Paul trap: the rf electrodes have
an angle of � ¼ 20� with the trap axis, the length of the trap
is 5 mm, the radial distance of the ion to the rf electrodes is
r0 ¼ 1 mm. The axial and radial frequencies of the trap are
!0;z=ð2�Þ ’ 6 MHz and !0;x=ð2�Þ ¼ !0;y=ð2�Þ ’ 35 kHz.
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nonzero power [28]. We determine the efficiency at maxi-
mum power in the limit of adiabatic and strongly nonadia-
batic processes, which we express in terms of the
nonadiabaticity parameter introduced by Husimi [29]. We
further present semiclassical Monte Carlo simulations,
with realistic parameters, that demonstrate the experimen-
tal feasibility of such a device. The single ion trap design
idea has several advantages. First, all of the parameters of
the engine, in particular the bath temperatures, are tunable
over a wide range. As a result, maximum power can be
achieved. Moreover, at low temperatures, the engine may
operate in the quantum regime, where the discreteness of
the energy spectrum plays an important role. In addition,
the coupling to the laser reservoirs can be either switched
on and off externally, or by the intrinsic dynamics of the
ion itself. In the latter, the engine runs autonomously [30].
Finally, we introduce a generic mechanism to store the
energy produced [7]. Since trapped ions are perfect oscil-
lator models, the results described here may be extended to
analogous systems, such as micro- and nanomechanical
oscillators [31–34], offering a broad spectrum of potential
applications.

Quantum Otto cycle.—We consider a quantum engine
whose working medium is a single harmonic oscillator
with time-dependent frequency !t, changing between !1

and !2. The engine is alternatingly coupled to two heat
baths at inverse temperatures �i ¼ 1=ðkBTiÞ (i ¼ 1; 2),
where kB is the Boltzmann constant. The Otto cycle con-
sists of four consecutive steps as shown in Fig. 1(a).
(1) Isentropic compression Að!1; �1Þ ! Bð!2; �1Þ: the
frequency is varied during time �1 while the system is
isolated. The evolution is unitary and the von Neumann
entropy of the oscillator is thus constant. Note that state B
is nonthermal even for slow (adiabatic) processes. (2) Hot
isochore Bð!2; �1Þ ! Cð!2; �2Þ: the oscillator is weakly
coupled to a reservoir at inverse temperature �2 at fixed
frequency and allowed to relax during time �2 to the
thermal state C. This equilibration is much shorter than
the expansion or compression phases (see below).
(3) Isentropic expansion Cð!2; �2Þ ! Dð!1; �2Þ: the fre-
quency is changed back to its initial value during time �3.
The isolated oscillator evolves unitarily into the nonther-
mal state D at constant entropy. (4) Cold isochore
Dð!1; �2Þ ! Að!1; �1Þ: the system is weakly coupled to
a reservoir at inverse temperature �1 >�2 and quickly
relaxes to the initial thermal state A during �4. The fre-
quency is again kept constant.

In order to determine the efficiency of the quantum
Otto cycle, we need to evaluate work and heat for each
of the above steps. During strokes (2) and (4), the fre-
quency is constant, and thus, only heat is exchanged with
the reservoirs. On the other hand, during strokes (1) and
(3), the system is isolated and work is performed only by
modulating the frequency. Since the dynamics is unitary in
the latter, the Schrödinger equation for the parametric

oscillator can be solved exactly and its mean energy can
be obtained analytically using a Gaussian wave function
ansatz [29,35,36]. The average quantum energies hHi of
the oscillator at the four stages of the cycle are

hHiA ¼ @!1

2
coth
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2

�
; (1a)

hHiB ¼ @!2

2
Q�

1 coth

�
�1@!1

2

�
; (1b)

hHiC ¼ @!2

2
coth

�
�2@!2

2

�
; (1c)

hHiD ¼ @!1

2
Q�

2 coth

�
�2@!2

2

�
; (1d)

where we have introduced the dimensionless adiabaticity
parameters Q�

1 and Q�
2 [29]. They are equal to one for

adiabatic (slow) processes and increase with the degree
of nonadiabaticity. Adiabatic throughout the Letter indi-
cates a process much slower than typical time scales of the
system, such as the oscillation period in the trap [37]. The
explicit expressions of Q�

1;2 for any given modulation !t,

can be found in Refs. [35,36]. Equations (1a)–(1d) reduce
to their classical limits when @ ! 0. The mean work,
denoted by hW1i, done during the first stroke is
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whereas the mean heat hQ2i exchanged with the hot reser-
voir during the second stroke reads,
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In a similar way, the average work and heat for the third
and fourth stroke are given by,
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and
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For a heat engine, heat is absorbed from the hot reservoir,
hQ2i � 0, and flows into the cold reservoir, hQ4i � 0. As a
result, the two conditions have to be satisfied:

Q�
1 �

cothð�2@!2=2Þ
cothð�1@!1=2Þ ; Q�

2 �
cothð�1@!1=2Þ
cothð�2@!2=2Þ : (6)

The efficiency of this quantum engine, defined as the ratio
of the total work per cycle and the heat received from the
hot reservoir, then follows as
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� ¼ �hW1i þ hW3i
hQ2i

¼ 1�!1

!2

cothð�1@!1=2Þ �Q�
2 cothð�2@!2=2Þ

Q�
1 cothð�1@!1=2Þ � cothð�2@!2=2Þ : (7)

The above exact expression is valid for arbitrary tempera-
tures and frequency modulations, and allows for a detailed
investigation of the performance of the engine.

Efficiency at maximum power.—Two essential character-
istics of a heat engine are the power output, P ¼ �ðhW1i þ
hW3iÞ=ð�1 þ �2 þ �3 þ �4Þ, and the efficiency at maxi-
mum power [28]. There is generally a trade off between
maximum power and maximum efficiency, at which power
is zero [38]. Maximum power and the corresponding effi-
ciency can be evaluated analytically for the quantum Otto
cycle with the help of Eq. (7). We shall separately consider
the case of adiabatic compression or expansion, Q�

1;2 ¼ 1,

and the case of a sudden switch of the frequencies for
which Q�

1;2 ¼ ð!2
1 þ!2

2Þ=ð2!1!2Þ. Let us begin with the

high-temperature regime �i@!j � 1; ði; j ¼ 1; 2Þ. The

total work produced by the heat engine for a quasistatic
frequency modulation is given by

hW1i þ hW3i ¼ 1
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Assuming that the initial frequency !1 (as well as �1, �2

and the cycle time) are fixed and by optimizing with
respect to the second frequency !2, we find that the power

is maximum when !2=!1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

p
. As a consequence,

the efficiency at maximum power is

�ad ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=�1

q
; (9)

which corresponds to the Curzon-Ahlborn efficiency [39]
(see also Refs. [7,8,25,26]). Conversely, for a sudden fre-
quency switch, the total work is
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By optimizing again with respect to !2, we find the power

to be maximized when the condition !2=!1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

4
p

is
satisfied. The corresponding efficiency reads [26],

�ss ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=�1

p
2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2=�1

p : (11)

Equations (9) and (11) show that maximum efficiency (of
either 1 or 1=2) can be attained when �1 ! 1. Repeating
the above optimization analysis in the low-temperature
(quantum) regime �1@!1 � 1, we find for the first time
the efficiency at maximum power

�q
ad ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!1�2=2

q
; (12)

for an adiabatic process when !2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!1=@�2

p
, and

�q
ss ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@!1�2=2
p

2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!1�2=2
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for a sudden frequency switch when!2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!3

1=@�2
4

q
. The

above expressions, in which the classical thermal energy
kBT1 is replaced by the ground state energy @!1=2 of the
oscillator, are the quantum extensions of the Curzon-
Ahlborn and Rezek-Kosloff results (9) and (11).
Proposed realization in a Paul trap.—Such a single ion

heat engine is composed of one trapped ion in a modified
linear Paul trap, as sketched in Fig. 1(c). The trapped ion is
initially prepared in a thermal state at low temperature by
laser cooling to the Doppler limit in all spatial directions.
The engine is driven by alternatingly coupling the ion to
two reservoirs that heat and cool the thermal state of the ion
in the radial direction through scattering forces. These two
baths are realized by differently detuned laser beams on a
cycling transition of the trapped ion, irradiated in the radial
plane (x, y); the temperature of the reservoirs is controlled
by the detuning [40]. In a first step, the coupling to the heat
reservoirs is switched on and off externally. The geometry
of a trap design with tapered radio-frequency (rf) elec-
trodes leads to a pseudopotential of the form [41],

Vpðx; y; zÞ ¼ m

2

ð!2
0xx

2 þ!2
0yy

2Þr40
ðr0 þ z tan�Þ4 þm

2
!2

0zz
2; (14)

where � is the angle between the electrodes and the trap axis
z, and r0 the radial distance of the ion to the electrodes, as
shown in Fig. 1(c). This potential results in radial trap
frequencies that depend on the axial position z, and in an
axial force that depends on the radial displacement.
The coupling between harmonic axial and radial modes

is of the generic form, H ¼ P
i2fx;y;zg@!0iðayi ai þ 1=2Þ �

Cẑ � ð!2
0xx̂

2 þ!2
0yŷ

2Þ, valid for small z, where C ¼
2m tan�=r0 denotes the coupling constant between the
oscillator modes, and !0i are the trap frequencies at the
center of the trap. A change in energy H of the radial state
of the ion, and thus of the width of its spatial distribution,
leads to a modification in the axial component of the repel-
ling force which changes the point of equilibrium z0ðHÞ.
Heating and cooling the radial state, hence, moves the ion
back and forth along the trap axis, as sketched in Fig. 1(b),
resulting in the closed Otto cycle shown in Fig. 1(a). This
thermally induced axial movement corresponds to the
mechanically usable movement of a piston of a classical
engine, while the radial mode corresponds to the gas in the
cylinder.
The energy gained by running the engine in the radial

mode can be stored in the axialmode by exploiting themode
coupling induced by the tapered geometry [see Eq. (14)].
An effective coupling between the modes is avoided
through their large frequency difference. However, by
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synchronizing the laser cooling or heating (radial) phases to
the axial frequency, the work produced can be resonantly
converted into an increasing axial oscillation [42]. In prin-
ciple, the excited axial oscillation is only limited by the trap
geometry. Such a power output mechanism is an essential
element of a heat engine [7]. The cycle time is given by the
axial oscillation period, and is of the order of 10 �s, while
the time needed to change the temperature is below 1 �s. In
order to reach a steady state, a red-detuned low intensity
dissipation laser is applied in the axial direction that
damps the coherent movement. The axially stored energy
may be transferred to other oscillator systems, e.g., sepa-
rately trapped ions [43] or nanomechanical oscillators [44],
and thus, extracted from the heat engine as usable work.
When driven as a heat pump, cooling of such systems
should be possible.

The single ion engine offers complete control of all
parameters over a wide range. The temperature of the two
heat reservoirs, as well as the applied dissipation, can be
adjusted by tuning the laser frequencies and intensities. On
the other hand, the oscillation amplitude and frequency of
the ion can be changed by virtue of the trap parameters.
This unique flexibility of the device can be exploited to
satisfy the conditions for maximum efficiency at maximum
power derived previously.

Monte Carlo simulations.—We have performed exten-
sive semiclassical simulations of the engine by solving the
Mathieu equations of motion of the ion, using Monte Carlo
and partitioned Runge-Kutta integrators, as described in
Ref. [45]. We reach a dynamic confinement of the ion in
the trap volume through an oscillating parabolic and
tapered saddle potential of the form

Vrf / U0 sinð!rftÞ
ðr0 þ z tan�Þ2 ðx

2 � y2Þ; (15)

with a trap drive frequency !rf ¼ 60 MHz, and the trap
geometry described in Fig. 1(c). The thermal state of the
ion is generated by a Boltzmann distributed ensemble
over several thousand classical trajectories [46]: the initial
parameters for each ion are chosen randomly, and the
desired thermal probability distribution is reached through
the ion-light interaction and the corresponding stochastic
spontaneous emission of photons [47]. The switching of
the detuned heating and cooling lasers is adjusted to the
axial trap frequency !z. Each laser is coupled to the ion
for 20% of an axial trap period. The ensemble of driven
oscillators is thus excited coherently in the axial direction
such that heating or cooling takes place at the turning
points of the trajectory, independently of the random initial
conditions. The (x, p) phase-space distribution, con-
structed from the simulated trajectories of the ion, is shown
in Fig. 3. The radial mode performs the Otto cycle ABCD,
while the axial (storage) mode oscillates coherently with
increasing amplitude �.

Radial temperatures in the range of 20 to 200 mK were
achieved, corresponding to 0:1<�2=�1 < 1 and respec-
tive radial phonon numbers of about 400 and 4000 [48]. In
the simulations the temperature is determined via the mean
energy, hHi ¼ kBT; in an experiment, it can be determined
via the method presented in Ref. [49]. For a realistic maxi-
mal axial amplitude of about 1 mm, the relative variation of
the radial frequency at 6.0 MHz is about 50%. By properly
adjusting the parameters to satisfy the optimality condition
in the quasiadiabatic regime, our simulations show that
this Otto engine has the ability to run at maximum effi-
ciency at maximum power in the interval 0:5<�2=�1 < 1
(see Fig. 2). The efficiency is determined via Eq. (7) from
simulated cycles as shown in Fig. 1(a) by evaluating the
energy differences hW1i, hW3i, and hQ2i between the points

a

b

c
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FIG. 2 (color online). Efficiency at maximum power of the
Otto engine as a function of the temperature ratio. (a) shows the
Carnot efficiency with zero power. (b) corresponds to the theo-
retical adiabatic process, Eq. (9), while (c) corresponds to the
sudden frequency switch, Eq. (11). The black points denote
the results of the numerical simulations with realistic trap
parameters, and demonstrate that the engine can run at maximum
efficiency at maximum power. The horizontal bars indicate
estimated upper bounds at !2 ¼ 1:5!1.

FIG. 3 (color online). Phase-space distribution of the motional
state of the ion during an engine cycle: (a) The radial modes
perform the full Otto cycle ABCD. (b) Coherent oscillations
(with typical displacement of � ¼ 103 wave packets) of the axial
mode used to store the produced work.
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ABCD. The power is obtained by dividing the total work by
the (constant) cycle time. The maximum efficiency is about
30% and significantly larger than those obtained to date
[18,19]. The power is of the order of P ’ 10�20 J=s. The
adiabaticity parameterQ�

1ð2Þ, given by the ratio of the action
hHi=! [37] at pointsB andA (D andC), see Eq. (1), is about
1.02. The case of a sudden switch can be realized by
exchanging the values of radial and axial frequencies.
Contrary to the adiabatic limit, the optimality condition
can be achieved down to �2=�1 ’ 0:2. However, the maxi-
mum efficiency reduces to 23%.

While so far the laser reservoirs have, for simplicity,
been switched on and off externally, another feature of this
Otto engine is the ability to operate in a completely self-
driven manner. To this end, the foci of the heating and
cooling lasers can be separated spatially on the trap axis
by, e.g., 200 �m, so that the ion is coupled to the heat
baths at the turning points of its axial trajectory. No active
switching is required and the axial motion of the ion is self-
amplifying. The ion needs to be driven only in the initial
phase of the axial motion to reach a threshold amplitude.
We note that at a radial frequency of 6.0 MHz, the thermal
energy of the oscillator, Eq. (1a), starts to deviate appreci-
ably from its classical value below 200 �K, which could be
reached with 40Ca-ions, if we assume a two-level approxi-
mation and the Doppler cooling limit TD ¼ @�=ð2kBÞ,
where � denotes the linewidth of the dipole transition. A
single ion engine has thus the potential to enter the quantum
regime and become a tool to study effects of quantum
coherence and correlations on the efficiency [9,13]. Appli-
cation of optimal control techniques [50] would further
allow for nonclassical bath engineering. The investigation
of heating and cooling on the simple and fundamental single
ion mode interactions may serve for prototyping heaters
or coolers also in systems, which share similar properties.
For the specific example of micromechanical oscillators,
mode coupling has been described and realized in several
experiments [33,34].

Conclusion.—We have put forward a realistic proposal
for a tunable nanoengine based on a single ion in a tapered
linear Paul trap coupled to engineered laser reservoirs. The
operation in the Otto cycle would result in coherent ion
motion. Combining analytical and numerical analysis, we
have studied the performance of the engine and showed
that it can run at maximum power in a wide range of
temperatures. We have, moreover, introduced a generic
power output mechanism which is crucial for the techno-
logical development of nanoengines.
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