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Abstract
MapReduce has been widely accepted as a simple programming
pattern that can form the basis for efficient, large-scale, distributed
data processing. The success of the MapReduce pattern has led to
a variety of implementations for different computational scenar-
ios. In this paper we present MRJ, a MapReduce Java framework
for multi-core architectures. We evaluate its scalability on a four-
core, hyperthreaded Intel Core i7 processor, using a set of standard
MapReduce benchmarks. We investigate the significant impact that
Java runtime garbage collection has on the performance and scal-
ability of MRJ. We propose the use of memory management auto-
tuning techniques based on machine learning. With our auto-tuning
approach, we are able to achieve MRJ performance within 10% of
optimal on 75% of our benchmark tests.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Experimentation, Performance

Keywords mapreduce, garbage collection, machine learning, Java

1. Introduction
The MapReduce programming pattern has its origins in functional
programming [14]. However, MapReduce has been popularized by
Google since they adopted this pattern as a highly effective means
of attaining massive parallelism in compute clusters [13]. Given
some input data, the map function operates on disjoint portions of
the data, potentially in parallel, constructing a set of (key,value)
pairs for each portion. The reduce function applies an associative,
commutative operator to all values with the same key.

A MapReduce framework automatically handles issues like
data-partitioning, load-balancing, and thread-scheduling. Thus the
application programmer is not required to re-implement these basic
threading mechanisms. Instead, the application logic is expressed
simply in terms of map and reduce functions, at a suitably high-
level of abstraction.

Over the past five years, MapReduce has attracted significant
attention from industry, academia and the open-source community
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[3]. The pattern still has its detractors [15]. However, it has been
demonstrated to give effective parallelism for important parts of
the computer applications spectrum e.g. machine learning [10],
databases [37], eScience [16].

Our objective is to investigate the MapReduce pattern in the
context of multi-core architectures, rather than within compute
clusters, as commonly used by Amazon, Facebook, Google and
Yahoo, amongst others.

1.1 Motivation for Multi-Core MapReduce
The microprocessor product lines from all major vendors are now
firmly entrenched in the multi-core era. Indeed, the industry trend
is moving to many-core, with next-generation architectures like In-
tel’s Single-chip Cloud Computer [22] which has 48 cores. How-
ever while the low-level architecture provides abundant parallel
threads of execution, high-level programming models are not suf-
ficiently mature or widespread to target this parallelism effectively.
There has been a great deal of research effort in this area. For in-
stance, new programming languages such as Fortress [4] and X10
[9] are under development. However these have not yet been widely
adopted. At the same time, new parallelism frameworks have been
introduced for existing languages, such as the Java fork/join frame-
work [24], Pervasive DataRush [11], and the Task Parallel Library
extensions to .NET [25]. These are complex libraries with signifi-
cant APIs.

We have implemented our MapReduce for Java system on top
of the Java fork/join framework [24]. In essence, we are treating
fork/join like the assembly language of parallelism, and we are
using MapReduce to provide a higher-level, simpler abstraction for
application software developers.

Implementations of MapReduce that do not target clusters have
started appearing recently. For example, He et al. [21] and Kruijf
et al. [12] have developed MapReduce for GPGPUs and Cell pro-
cessors, respectively. The Phoenix project [31, 38] is the only pre-
vious implementation that focuses on shared memory multi-core
architectures. Our implementation targets the same system type
as Phoenix, however we are working in Java, whereas Phoenix
is based on C/C++. Java gives us certain inherent advantages, de-
scribed in Section 1.2. However there can be a performance penalty
caused by Java’s automatic memory management, which Section 4
explores.

1.2 Motivation for MapReduce in Java
The MapReduce pattern is programming language agnostic. How-
ever in our opinion, there is plenty of synergy between the Java
programming language and the MapReduce programming model.
They both have a similar overall aim, in terms of reducing the
burden of programming complexity. The Java language provides a
runtime system that supports automatic memory management, hot
code recompilation, and robust error handling, inter alia. MapRe-



duce provides a runtime system that handles data distribution,
thread scheduling, and error recovery. The philosophy underly-
ing both frameworks can be summarized as: Let the framework do
the work. Since the programmer is relieved from handling these
complex and error-prone tasks manually, then he is free to focus on
implementing the application logic of the program.

An explicit motivation for Java is its platform independence.
MapReduce programs written in Java can be distributed as plat-
form neutral JVM bytecode. In addition, a Java MapReduce frame-
work is straightforward to port to new multi-core architectures,
since its only requirement is a suitable virtual machine supporting
lightweight parallel thread spawning on different cores.

The major open-source implementation of MapReduce, Hadoop
[1] is also developed in Java. However Hadoop focuses on opti-
mizing cluster-level parallelism. If a cluster node has n cores, the
Hadoop runtime simply spawns n instances of a Java virtual ma-
chine on that node. This is a heavyweight approach to multi-core
parallelism. We hope that our investigation of lighter-weight multi-
core MapReduce using the Java fork/join framework (MRJ) can
contribute directly to the evolution of the Hadoop project.

1.3 Motivation for GC Auto-Tuning
Because MRJ is implemented in Java, it depends on the auto-
matic memory management provided by the underlying Java vir-
tual machine. We find that Java runtime garbage collection inter-
acts with MRJ application performance in non-obvious ways. The
case studies in Section 4 demonstrate that this interaction is often
benchmark-specific, or may only occur for certain heap sizes.

We argue that the MRJ end-user cannot be expected to perform
expert analysis to determine (a) that GC activity is reducing the
performance of MRJ, and (b) how to change the JVM configuration
to improve the situation. Instead we propose the use of a GC auto-
tuning system for MRJ applications. This system would have the
following advantages:

1. It could adapt to benchmark-specific or heap-size-specific
anomalies much more efficiently than a non-expert user.

2. It could be installed by the system administrator and automat-
ically enabled for users that do not have sufficient permissions
to change JVM parameters, e.g. on a utility computing platform
[5] like Google AppEngine [18].

3. It would enable rapid deployment of MRJ on new multi-core ar-
chitecture layouts. This is important due to the rapidly changing
multi-many-core processor landscape.

1.4 Contributions
This paper makes several key contributions.

1. Section 3 demonstrates the scalability of our MRJ framework
for standard benchmarks, on a commodity multi-core platform.

2. Section 4 highlights the major impact that Java runtime garbage
collection (GC) has on MRJ, in a series of case studies.

3. Section 5 presents an auto-tuning approach to optimize GC for
MRJ, giving speedups of up to 6x the default GC policy, with
a 10% geometric mean speedup over all benchmarks with the
largest input data sets.

2. MRJ Implementation
This section gives an overview of the design and implementation
choices we made for MRJ, our MapReduce Java framework for
multi-core architectures. A full technical description of MRJ is
available in our earlier work [23].

1 p u b l i c c l a s s WordCount implements
2 St r ingMapper , S t r i n g R e d u c e r {
3
4 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
5 f i n a l WordCount w c i n s t a n c e =new WordCount ( ) ;
6 J o b C l i e n t j o b C l i e n t = J o b C l i e n t . g e t I n s t a n c e ( ) ;
7 JobConf jobConf = j o b C l i e n t . ge tConf ( ) ;
8 jobConf . s e t I n p u t t y p e ( Inpu tType . F i l e ) ;
9 j o b C l i e n t . se tMapper ( w c i n s t a n c e ) ;

10 j o b C l i e n t . s e t R e d u c e r ( w c i n s t a n c e ) ;
11 j o b C l i e n t . i n i t i a l i s e ( WordCount . c l a s s ) ;
12 j o b C l i e n t . submitApp ( w c i n s t a n c e ) ;
13 }
14
15 p u b l i c vo id map ( S t r i n g key , S t r i n g va lue ,
16 S t r i n g O u t p u t C o l l e c t o r o u t p u t ) {
17 S t r i n g T o k e n i z e r t k n =new S t r i n g T o k e n i z e r ( v a l u e ) ;
18 whi le ( t k n . hasMoreTokens ( ) ) {
19 S t r i n g word= t k n . nextToken ( ) ;
20 o u t p u t . putKeyValue ( word , ‘ ‘1 ’ ’ ) ;
21 }
22 }
23
24 p u b l i c S t r i n g r e d u c e ( S t r i n g key , S t r i n g v a l u e ) {
25 S t r i n g T o k e n i z e r t k n = new S t r i n g T o k e n i z e r ( va lue

, ‘ ‘ | ’ ’ ) ;
26 S t r i n g B u i l d e r s t r b =new S t r i n g B u i l d e r ( key ) ;
27 i n t sum = 0 ;
28 whi le ( t k n . hasMoreTokens ( ) )
29 sum += I n t e g e r . p a r s e I n t ( t k n . nex tToken ( ) ) ;
30 re turn ( s t r b . append ( ‘ ‘ : ’ ’ ) . append ( sum ) ) .

t o S t r i n g ( ) ;
31 }

Figure 1. Actual implementation of WordCount in MRJ

2.1 Example MRJ Application
The design of MRJ shares many features with Hadoop at the appli-
cation interface level (and also, e.g., for job submission, setting the
configuration parameters, and initialising the framework) as both
frameworks are implemented in Java.

The WordCount application is the canonical MapReduce pro-
gramming example [13]. It counts the number of occurrences of
each word in an input text file. The MRJ implementation requires
the programmer to define only two methods: map and reduce since
all other operations including task splitting and output sorting are
provided directly by the MRJ runtime system.

Figure 1 shows the actual Java source code for the WordCount
application, including a small amount of boilerplate initialization
code. It is apparent from this listing that the MRJ API abstracts
away all the details of the parallelization, runtime scheduling, etc,
so the application programmer is enabled to focus on the appli-
cation logic. The entire implementation of this simple application
takes less than 30 lines of Java code. Other common string process-
ing applications such as Grep, StringMatch and ReverseIndex may
be implemented simply by altering the map and reduce methods in
Figure 1.

2.2 MRJ Implementation Basis
The distinguishing feature of MRJ is that it exploits a recursive
divide-and-conquer approach. The implementation takes advantage
of this by relying on work stealing and the Java fork-join framework
(part of pre-release version of java.util.concurrent package
for JDK1.7) [2, 24].

The execution sequence of fork/join parallelism is analogous to
the MapReduce pattern. In fork/join parallelism, a given computa-



tional task is divided into new subtasks and each subtask is exe-
cuted in parallel on a separate core. The instantiation of subtasks
in parallel is represented by the fork operation. The correspond-
ing join operation ensures that the main execution context waits for
the completion of all subtasks in a barrier synchronization before
proceeding to the next stage. The significance of using fork/join
parallelism is that it provides very efficient load balancing, if the
subtasks are decomposed in such a way that they can be executed
without dependencies.

Our MRJ framework builds upon the parallelism constructs
provided by the Java fork/join framework to take advantage of
the parallelism exposed by the functions map and reduce. Any
MapReduce application has a high degree of parallelism, as the
particular input to each map and reduce function is processed
without any dependence on other portions of the overall application
input.

We initialize a ForkJoinPool of worker threads, which will ex-
ecute map and reduce methods as ForkJoinTask instances. In or-
der to successfully complete any map or reduce phase, each worker
thread needs to wait for other worker threads to finish execution
before proceeding. The impact of such overhead is significantly re-
duced in MRJ framework by using a Cilk-style work-stealing tech-
nique [7]. This way of scheduling the subtasks minimises the load
imbalance due to uneven distribution of the computation associ-
ated with each task. Each worker thread has a double-ended queue
of map or reduce tasks awaiting execution. If any thread’s queue is
empty, it may steal a task from another thread’s non-empty queue.

Dynamic load balancing is useful since some map/reduce tasks
may finish quicker than others. For instance, the computation time
may depend on values in the input data set, rather than just the
size of the input data. Again, there may be architectural reasons
for some tasks finishing quicker. Cache locality, or CPU turbo
boosting on Intel Core i7 may make some cores execute faster.
Indeed, heterogeneous multi-core architectures are an ideal target
for a dynamic load-balancing system like MRJ.

2.3 MRJ Execution Details
Figure 2 presents an overview of the execution stages of the
MapReduce pattern. Partitioning of the input data creates subtasks
with equal size of partitioned data units. Worker threads in the
ForkJoinPool execute the generated subtasks, at the map and
reduce stages.

The number of worker threads is generally upper-bounded by
the number of cores in the system. The particular task scheduling
policy may be configured in the MRJ setup. With static schedul-
ing, for each map or reduce phase, the number of subtasks created
is equal to the number of worker threads in the fork-join pool. On
the other hand, dynamic scheduling allows for more fine-grained
parallelism. Many more subtasks are created than there are worker
threads in the fork-join pool. The actual number of subtasks can
be varied dynamically in the framework. This fine-grained paral-
lelism improves load balance, cache locality and scalability (since
it allows greater scope for the work-stealing mechanism to oper-
ate). However, generating more subtasks can increase the overhead
due to task creation, garbage collection and scheduling. In all our
experiments, we find that we can achieve good performance using
around eight times as many subtasks as there are available threads.
This is the recommended ratio for fork-join tasks to worker threads,
in the fork-join library.

In order to improve performance for recursive calls to the
MapReduce function, a job-chaining functionality, similar to Hadoop’s,
has been implemented in MRJ. Job chaining enables multiple calls
to map and reduce phases during a single MapReduce execution.
This feature is required, for example, to implement the kmeans
benchmark in which the runtime iterates through the map and re-

Figure 2. Schematic diagram for MapReduce execution

Vendor Intel
Codename Nehalem
Architecture Core i7
Cores/Contexts 4/2
Per-core L1 i/d 32KB/32KB
Per-core L2 256KB
Shared L3 8MB
Core freq 2.67GHz
RAM size 6GB
OS Linux 2.6.31
JVM (1.6) 14.0-b16
max fixed heap 4GB

Table 1. Multi-core architecture for evaluating MRJ scalability

duce stages to compute the final cluster for a given set of coor-
dinates. The benefit of using the job-chaining feature is that all
the worker threads and data structures created during the first Map
and Reduce stages are reused, thus reducing memory management
overhead.

3. Scalability Study
In this section, we evaluate the scalability of our MRJ framework
on a commodity multi-core architecture described in Table 1. This
is a shared-memory, uniform memory access multi-core processor.

All experiments take place using a fixed JVM heap size, that is
large enough to minimize any GC activity. (We explore the impact
of GC in more detail in Section 4.) Each experiment is run five
times, and the arithmetic mean is reported as the result. We use
a nanosecond resolution timer. Speedup is calculated as T1/Tp,
where T1 is the execution time with a single MRJ thread, and Tp is
the execution time using p MRJ threads.

Table 2 summarizes the seven MapReduce benchmarks we have
ported to MRJ, and their input data sets. The porting process simply
involves transliterating the application code from the open-source
Phoenix implementation to our Java MRJ framework. (Phoenix is
another multi-core MapReduce platform, developed in C [31].)

Figure 3 shows the scalability curves for all benchmarks, for in-
creasing numbers of runtime threads allocated to the Java fork/join
pool. The graphs only show the Large input data sets in this section.

The majority of benchmarks do not scale beyond 4 threads on
the Core i7 platform, which has 4 cores, each with 2 hyperthread
contexts. The intelligent JVM scheduler places the first four MRJ
worker threads on separate cores. However hyperthreading does not
give any significant performance gain for memory-bound applica-
tions. On a cache miss, a hardware thread is context-switched for
a different hardware thread. However, if all threads incur frequent
cache misses, then they are all stalled and no useful work can be
done by the extra contexts. On the other hand, compute-bound ap-
plications such as matrix and pca show some further scaling be-
yond 4 threads on Core i7, gaining additional benefit from the hy-



benchmark description input data
grep find string occurrences in input text file S:10MB, M:50MB, L:100MB
kmeans group 3d points into clusters based on

their Euclidean distance
S:100k points, M:250K, L:500K

linearR compute best-fit line for input data file S:10MB, M:50MB, L:100MB
matrix dense integer matrix multiplication S:1000x1000 values, M:2000x2000, L:3000x3000
pca principal components analysis on an in-

teger matrix
S:1000x1000 values, M:2000x2000, L:3000x3000

sm search input text file for a word S:10MB, M:50MB, L:100MB
wc count instances of each unique word in

input text file
S:10MB, M:50MB, L:100MB

Table 2. MapReduce Benchmarks evaluated in the MRJ framework
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Figure 3. Scalability of MRJ benchmarks on Intel Core i7

perthreading contexts. These benchmarks have more regular mem-
ory access patterns, which gives them relatively good cache local-
ity.

Similar trends in behaviour for compute-bound and memory-
bound benchmarks on simultaneous multi-threaded (SMT) multi-
core architectures has been observed for the PARSEC benchmark
suite [6].

In order to characterize which MRJ benchmarks are memory-
bound and which are compute-bound, we run a set of simple pro-
filing experiments. We use the Linux oprofile tool, to sample the
LLC MISSES and DTLB MISSES hardware performance counters on
the Intel Core i7 platform. We sample every 6000th retired mem-
ory load event that misses the L3 cache, and every 6000th memory
access that incurs a DTLB miss, during MRJ benchmark execu-
tion. In order to make sure all cores are roughly equally loaded,
we profile with 8 MRJ threads running. If we divide each sample
count by the benchmark execution time, we should obtain values
that correlate roughly with the L3 cache miss rate and DTLB miss
rate for this benchmark. We say that MRJ benchmarks with high
cache miss rates are memory-bound, conversely those with low
cache miss rates are CPU-bound. Benchmarks with a low DTLB
miss rate exhibit good locality of reference, whereas those with a
high DTLB miss rate do not have good locality. Table 3 reports the
mean of 5 measurements for each benchmark using 8 threads with
large heap sizes to minimize GC.

We note that matrix has comparatively low miss rates, which
account for its near-linear scalability. Since matrix multiplication is

benchmark L3 miss rate σ DLTB miss rate σ
grep 2283 90 556 41
kmeans 1547 30 38 2
linearR 2430 244 254 14
matrix 175 5 52 2
pca 231 5 48 1
sm 2377 161 251 14
wc 2271 89 617 26

Table 3. Oprofile samples for miss rates on Core i7, means and
standard deviations for five runs of each benchmark

implemented as simple linear array traversals, it exhibits excellent
cache locality. The kmeans benchmark has higher miss rates, since
it has little spatial locality. In the kmeans data, close points in the
3-d co-ordinate space are randomly distributed in the Java heap.
The grep and wc benchmarks are operating on String based data,
and have high miss rates.

4. Impact of Garbage Collection
Since MRJ is implemented in Java, it relies on the underlying JVM
to provide garbage collection (GC) services. The impact of GC is
more significant for execution with relatively small heap sizes: In
the earlier experiments in Section 3, heap space is explicitly fixed
at 4GB to minimize GC effects.

The Java 1.6 runtime provides three standard GC algorithms:
serial, parallel, and concurrent. The serial collector is a stop-the-
world GC (i.e. all application threads must be paused before GC
takes place) which uses a single thread to perform all collection.
Thus there is no inter-thread communication overhead for serial
GC. The parallel collector is also a stop-the-world GC. However
it uses multiple threads to perform the collection, thus it can out-
perform the serial collector for applications with large data sets,
running on architectures that provide multiple hardware threads.
The concurrent collector [29] performs most of its work while the
application threads are running. This minimizes GC pause time,
which improves response time for interactive applications. How-
ever there is a runtime overhead to support concurrent GC, which
means parallel GC generally gives better overall execution times.

When we run an MRJ application with n threads, we allow the
parallel and concurrent GCs to use n threads also. (The number
of threads to use for GC can be specified as a JVM command-line
parameter.)

For MRJ application execution, there are two major causes of
heap memory usage. (i) The size of the input data set affects the
heap space requirements. (ii) The specified number of map and
reduce threads, and the granularity of the tasks, affects heap space
requirements. This is because each individual task resolves to a
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ForkJoinTask instance, which requires its own book-keeping data
structures in memory.

In the remainder of this section, we present some results that
appear to be MRJ performance anomalies, but can be explained by
considering the GC interaction with MRJ.

4.1 Inverse Scaling for Small Heaps
The first potentially surprising result is that the grep benchmark
performance degrades with increasing numbers of threads, for
small heap sizes. This is the case for all GC algorithms; Figure
4 illustrates the point for the serial GC, using the large input data
set. When the heap size is 1024MB, the speedup drops below one
when the number of processors is above two. However at all larger
heap sizes, the speedup increases until the number of processors
reaches four, then it hits a plateau (as shown earlier in Figure 3).

The reason for this slowdown at 1024MB, as the number of
threads increases, is heap space pressure due to increasing memory
consumption from the Java fork-join threads.

From an analysis using the Java hprof heap profiling tool, we
see that the total amount of memory allocated in grep is gener-
ally invariant, no matter how many worker threads are allocated
to the Java fork/join pool. However the amount of live data on
the heap is proportional to the number of concurrently executing
worker threads. This is because each thread has its own thread-
local data structures, such as StringBuffer objects and backing
char arrays. Thus with more concurrent worker threads, there is
a higher proportion of live data on the heap, which increases heap
space pressure. This causes a greater number of garbage collec-
tions, hence the slowdown in overall application execution time.
Figure 5 shows how the proportion of application execution time
spent in GC increases with the number of threads, for the 1024MB
heap size with serial GC. With a single fork/join worker thread,
the GC time is 16%. This rises to 74% with eight fork/join worker
threads. At larger heap sizes, the proportion of time spent in GC is
much less significant.

Figure 6 shows how the max live size statistic varies with the
number of fork/join threads, for grep with the Large input in a fixed
1024MB heap. The max live size measure is an approximation of
the minimum memory requirement for a program, based on the
high-water-mark of live data over all GC events throughout the
program execution. Note how this high-water-mark approaches the
fixed heap capacity for larger numbers of fork/join threads. We
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observe similar behaviour with the wc benchmark. At 1024MB it
fails to execute the Large input data due to OutOfMemory errors for
any more than two worker threads.

4.2 Relative GC Performance is Input Dependent
It is apparent that the behaviour of applications is often highly in-
put dependent. Mao et al. [27, 33] establish the influence of Java
program inputs on the minimum heap size required for successful
execution, and the relative performance of various garbage collec-
tion algorithms.

We have three input data sets for each MRJ benchmark, classi-
fied as Small, Medium and Large. Using Small inputs, MRJ appli-
cation performance is generally similar irrespective of the selected
GC algorithm. This is because there is relatively little allocation, so
the GC does not have much work to do. On the other hand, with



larger inputs (or equivalently, smaller heap sizes 1), there are sig-
nificant differences in performance between the various GC algo-
rithms. As a general rule, parallel GC outperforms serial GC on
larger inputs, when the number of threads is above two. Since par-
allel GC uses multiple threads to perform collection, it reduces the
GC pause time relative to serial GC.

Table 4 illustrates the point that the relative performance of each
GC algorithm varies with application input. For the wc MRJ appli-
cation, we evaluate each input data set with each GC algorithm,
in a variety of heap sizes ranging from 1 to 4GB. So for each
(inputsize, heapsize, numthreads) combination, we have
three execution times, one per GC algorithm. We define a GC’s
performance as good if it gives an execution time within 10% of
the optimal time from any GC algorithm for this (inputsize,
heapsize, numthreads) case.

Table 4 enumerates all the cases: each table cell corresponds
to a single case. For each case, the cell label indicates which
GC algorithms are good. (Note that between one and three GC
algorithms can be good for a particular case2.)

For the Small input, the serial GC appears to be good for the
majority of cases. On the other hand, for the Large input, the
parallel and concurrent GC algorithms appear to outperform the
serial GC for many cases.

Other benchmarks, such as matrix and kmeans, have negligible
GC overhead at all the heap sizes we tested. These benchmarks do
not exhibit significant GC performance variation with input.

4.3 Relative GC Performance is Application Dependent
It is a well-established fact that the relative performance of different
GC algorithms is dependent on the characteristics of the application
being executed [17, 28, 35] particularly at smaller heap sizes.

As one might expect, parallel GC (which is the default option
on server class JVMs) generally outperforms serial and concurrent,
especially for larger numbers of threads. However this is not always
the case. For instance, the sm benchmark performs better with
concurrent instead of parallel GC. For example in a 2GB heap, the
sm benchmark with Large input executing on 8 threads takes an
average of 2.26s with parallel GC, but only 0.61s with concurrent
GC.

The unusual behaviour of sm can be understood by referring
to its high object death rate. Figure 7 shows the death rates for all
MRJ benchmarks. We compute the death rate as the total amount
of collected garbage during the program execution divided by the
total execution time of the program. The bar chart shows that sm
has a significantly higher death rate than the other benchmarks.

Concurrent GC identifies and collects dead objects in the back-
ground, while the application is executing. This avoids long pauses
for full-heap scans. We suggest that since the sm benchmark cre-
ates large numbers of short-lived objects, these are collected very
shortly after their allocation, reducing overall heap consumption
and increasing data locality. This has a significant impact on over-
all application performance.

As earlier, we use oprofile to quantify cache locality. We mea-
sure the L3 cache miss rates for sm with different GC algorithms,
at a sampling rate of 6000, for 8 threads, Large inputs, 2GB heap.
Table 5 shows this data, demonstrating that the cache locality is
much better for concurrent GC.

1 Although this is a similar point to earlier, there is a distinction. Section 4.1
showed that small heaps magnify the impact of GC. Section 4.2 shows that
in relatively small heaps, some GC variants are noticeably more effective
than others.
2 In a few cases the benchmark throws an OutOfMemory error for all GC
algorithms, so no GC algorithm is good.
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Figure 7. Object death rates for the MRJ benchmarks, running
with 1 thread, serial GC, large inputs, 2048MB heap

GC L3 cache miss rate σ
serial 1973 57

parallel 3540 86
concurrent 1054 96

Table 5. Mean and standard deviation of L3 cache miss sample
rates from oprofile over 10 runs of sm, for each GC algorithm

5. Auto-Tuning Garbage Collection for MRJ
In this section, we investigate the use of machine learning to select
a suitable GC policy for each MRJ program. Previous sections have
demonstrated that the GC performance is dependent on a number of
factors, including benchmark characteristics, JVM heap size, and
number of threads. In general, it is not straightforward to select
the optimal GC policy without exhaustively testing all candidate
policies. We show that it is not the case that a single GC policy is
uniformly good for all programs.

Our objective is to implement a GC auto-tuning framework
for MRJ. Given a new benchmark, input dataset, and system con-
straints on heap size and number of threads, the auto-tuning frame-
work predicts a suitable GC policy. For this initial investigation, the
GC policy consists of the GC algorithm (serial, parallel or concur-
rent) and the heap space layout (young:old generation ratio of 1:2
or 1:8). Thus there are six different GC policies, based on the var-
ious combinations of these configuration options. Other aspects of
memory management could be incorporated into this auto-tuning
framework, but these seem to be the most significant concerns re-
lating to GC performance.

5.1 Motivation
Why should we have a specific GC tuning framework for MRJ? We
feel there are several compelling reasons:

1. MRJ application developers will not be interested in the me-
chanics of GC. It is a low-level cross-cutting concern, to be
addressed by the software platform architects, rather than ap-
plication developers or users.

2. GC is crucial since it has effects on runtime behaviour, includ-
ing thread scheduling, cache locality, response time, and overall
execution time.

3. We can make use of MRJ-specific information as features to
characterize applications, in order to predict appropriate GC



input Small Medium Large
heap/GB 1 2 4 1 2 4 1 2 4

#t
hr

ea
ds

8 P S,P S,P C P P C P
7 P S,P S,P C P P C P
6 P S,P S,P C P,C P C P,C
4 P S,P S,P S,P,C P P S,P,C P,C
2 P S,P S,P P P P C P P
1 S S,P S,P S,P,C S,P,C S,P,C C S,P S,P

Table 4. (S)erial, (P)arallel and (C)oncurrent benchmarks exhibit ‘good’ performance for different scenarios depending on input for the wc
benchmark

policies. This might include allocated object types and sizes.
For example, large int arrays tend to last for the lifetime of the
application (consider the matrices in matrix multiplication or
pca ). On the other hand, smaller objects are more short-lived,
such as StringBuffer objects in the wc or grep applications.

4. An accurate GC auto-tuning framework ought to give a time
saving. When a new MapReduce application arrives, the frame-
work will predict an appropriate GC policy for its execution
given the system constraints. Without this auto-tuning, we
would have to do exhaustive profiling, i.e. evaluate each in-
dividual GC policy. With auto-tuning, we can gather static fea-
tures from the benchmark code and system parameters, and
perhaps gather dynamic features from a small number of trial
executions.

5.2 Data Set Generation
This section outlines the features that we use to characterize indi-
vidual MRJ benchmark executions with specific constraints. These
features will be used as inputs to the learning algorithm, which will
predict a good GC policy.

The MRJ system constraints specified by the user are the JVM
fixed heap size and the number of threads. In general, a larger heap
and more threads should improve the overall performance of the
application. However there may be other system-level restrictions
that determine a particular MRJ application’s resource usage.

Other features are dynamic characteristics of the individual ap-
plication and its input data. We record the number of minor and
major GCs that take place on a single run through the program,
along with the time spent in GC as a proportion of the overall exe-
cution time. We measure the total amount of memory dynamically
allocated by the application during its execution, and the proportion
of this allocated memory occupied by String objects, and int ar-
rays. These two are the most common datatypes manipulated by
our MRJ benchmarks.

All of these dynamic features are collected on a single run of an
MRJ program, using serial GC with 1 MRJ thread. In fact, we have
two trial executions, one with a young:old heap ratio of 1:2, and the
other 1:8. This gives us twice as many features for the GC-specific
data. We make use of the extensive JVM profiling features, such as
the hprof agent library and verbose GC logging. Table 6 presents
a summary of all the features collected for each (benchmark,input)
combination.

Next we collect the execution times on the Intel Core i7 ma-
chine. These execution times form the basis for the target class in
our data set. For each (bm,input,heapsize,numthreads) com-
bination, we run 5 experiments for each GC policy, and compute
the arithmetic mean execution time.

From this information, we generate the data set for the machine
learning algorithm as follows. For each experiment, there will be
an optimal GC policy, i.e. the policy that gives the lowest execution
time. We say that a GC policy is good for an application execution

feature type how collected
heap size (MB) integer system parameter
# MRJ worker threads integer system parameter
# minor GCs (x2) integer trial execution
# major GCs (x2) integer trial execution
% GC time (x2) real trial execution
bytes allocated integer trial execution
% String alloc’d real trial execution
% int array alloc’d real trial execution

Table 6. Summary of features collected for each (bench-
mark,input) combination

if the time is shorter than 95% of the time with the default policy,
and if the time is no longer than 110% of the optimal time. (These
thresholds require some experimentation, informed by the standard
deviations of the execution time distributions for each application.)

So, for each application execution, we can say which GC poli-
cies are good, and which are not. We build a distinct classifier for
each policy, to predict whether or not that policy is good for a par-
ticular experiment.

We create classifiers using leave-one-out cross-validation (LOOCV).
We set up a training set to include experimental data for all bench-
marks except one, and then train the classifiers using this data. Sub-
sequently we test the generated classifiers on the missing bench-
mark to obtain fair predictions. (For n benchmarks, we have n
rounds of LOOCV, each time eliminating one of the n benchmarks
from the training set.)

The following section gives details of the classification tech-
nique we use.

5.3 Prediction Technique
We instantiate a separate classifier for each GC policy p, that pre-
dicts whether p enables good performance for an MRJ benchmark
and its input, given their set of features. This is a variant of one-
versus-all prediction [32], which is a commonly accepted way of
decomposing a multi-class problem.

Each individual classifier is a random forest, which is an ensem-
ble predictor consisting of many decision trees [8]. Decision trees
automatically select the most relevant features for the classifica-
tion problem, and discard less relevant features [30]. The ensemble
technique introduces a small amount of randomness into the se-
lected features to make the overall classifier more robust. We use
the Weka [19] implementation of random forests, with all the pa-
rameters set to default except that we have 20 trees for each forest.

It may be the case that multiple individual classifiers predict
that a program/input will be good with this GC policy. We apply
the predictors in a simple cascade of classifiers [36]. This means
that we impose an order on the policies, then apply the predictors
in this order. If at any stage in the cascade, the predictor indicates
good performance, then we go with this policy, otherwise we try
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Figure 8. Heatmap showing GC auto-tuning performance relative
to optimal policy, for each benchmark execution, at varying heap
sizes (1,2,4 GB) and numbers of threads, with Large input data sets.
White cells (around 75% of complete experiments) indicate that
the predicted GC policy was close to the the optimal policy. Grey
cells indicate that the selected GC policy gave clearly sub-optimal
performance. Black cells indicate that the particular experiment did
not complete with any GC policy due to OutOfMemory errors.

the next predictor in the cascade. If no good policy is predicted,
then we use the default HotSpot server GC policy, which is parallel
GC with a 1:2 young:old heap layout.

The actual order of classifiers in our cascade, in terms of their
predicted GC policies expressed as algorithm-ratio is: concurrent-
1:8, concurrent-1:2, serial-1:8, serial-1:2, parallel-1:8, parallel-1:2.
This ordering is another part of the learning that could be tuned
directly. However to avoid complications we settled on this fixed
order that gives good overall results.

5.4 Evaluation of Performance Tuning
We test the performance of this cascade of classifiers by using it
to predict suitable GC policies for the (benchmark,input) combi-
nations that we excluded from the LOOCV training data. We only
give results for Large input data sets. For smaller inputs, there is
less variation between the GC algorithms’ performance.

Figure 8 presents the results of the GC auto-tuning, as a
heatmap. For each benchmark, with a particular heapsize and num-
ber of threads, we compare the overall execution performance with
the predicted GC policy against the best performance (optimal)
of any of the six specified GC policies. In 82 cases out of 110
completed experiments, the predicted policy gives comparable per-
formance with the optimal policy.

Even in cases that do not perform as well as the optimal time,
we may still outperform the default policy, and thus get some im-
provement. For instance, this scenario occurs for the sm benchmark
when using larger numbers of threads.

Figure 9 shows another map over the same experiments. Here,
we report whether our predictive GC policy gives performance at
least as good as the default GC policy. White cells indicate that
the corresponding experiments are not more than 10% slower than
the default execution time. In only 11 cases (out of 110) is the
predicted performance significantly worse than default. These cases
are indicated by grey cells in the heatmap.

The overall worst case is a 30% slowdown3. Across all 110
experiments, the maximum speedup of the predicted policy over

3 For execution of grep with 4GB, 8 threads, using the serial-1:8 GC policy.
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Figure 9. Heatmap showing GC auto-tuning performance relative
to default GC policy, on benchmarks with Large inputs. White cells
(around 90% of complete experiments) indicate that the predicted
GC policy was at least as good as the default policy. Grey cells
indicate that the selected GC policy gave worse than default perfor-
mance. Black cells indicate that the particular experiment did not
complete with any GC policy due to OutOfMemory errors.

the default policy is 6.0 times4, and the geometric mean speedup
over all experiments is 1.1 times.

The predictor suggests using the default policy in only 5 out
of 110 cases. However note that GC policy does not make much
overall difference for benchmarks that do little dynamic memory
management, such as matrix and pca.

6. Related Work
The original work on MapReduce [13, 14] applies to compute-
clusters. Ranger et al. describe the first application of MapReduce
to multi-core processors [31]. Yoo et al. later extend this to non-
uniform memory access architectures [38]. They discuss the scala-
bility of memory management in terms of malloc and mmap func-
tions. Since their work is in C/C++, they do not have automatic
memory management overhead.

Since the Hadoop MapReduce system [1] is implemented in
Java, its performance can be affected by runtime garbage collection
like our MRJ framework. The Hadoop developers give a limited
amount of advice5 on performance tuning for GC with Hadoop.
However they do not appear to consider tuning for application-
specific behaviour. Their chief concern is to minimise pause time
by using a concurrent GC algorithm with a small nursery space.

The techniques for understanding interactions between an ap-
plication and a runtime system are inspired by Hauswirth’s work
on vertical profiling [20]. He considers all levels from architec-
ture through to application, to explore reasons for apparent anoma-
lous behaviour. In the present paper, we have attempted to follow
his holistic approach by considering and relating performance data
from hardware counters, through JVM level statistics, to applica-
tion performance.

A recent paper analysing the behaviour of multi-threaded Java
workloads on multi-core systems shows that conventional mem-
ory management techniques do not scale to large multi-core envi-

4 For execution of sm with 2GB, 2 threads, using the serial-1:8 GC policy.
(Note that although both examples given use the serial-1:8 policy, all the
other GC policies are predicted for various examples in the space of exper-
iments.)
5 http://wiki.apache.org/hadoop/PerformanceTuning



ronments, and require adaptation [40]. They identify an allocation
wall, which refers to the maximum rate of allocation from concur-
rent JVM threads. In our limited experience with MRJ benchmarks,
we have not hit the allocation wall. Most MRJ programs create ma-
jor data structures up-front, then operate on these throughout the
map or reduce phases, only allocating small objects (String in-
stances, etc) during MapReduce computation. We have not hit a
corresponding de-allocation wall, except as in Section 4.1 when
the heap size is relatively small.

Singer et al. investigate the automatic selection of garbage col-
lection algorithms for a set of standard Java benchmarks, using dif-
ferent feature sets and learning algorithms [34]. In the specific con-
text of MapReduce for Java, we feel that the current set of features
and learning strategies fit better.

We note that, in general, the application of machine learning to
Java runtime performance auto-tuning is a growing trend [26, 39].

7. Conclusions
This paper presents MRJ: a Java-based framework for MapRe-
duce parallelism that targets conventional multi-core architectures.
We have demonstrated its scalability of performance, with increas-
ing numbers of threads allocated to the underlying Java fork/join
pool. We have highlighted the interactions between MapReduce
benchmarks and the garbage collector, and shown how a machine-
learning GC auto-tuning policy can improve runtime performance.

We intend to release MRJ shortly as an open-source project,
since we hope it will be useful to a wider community.
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