Single-walled carbon nanotubes are strongly correlated systems with large
Coulomb repulsion between two electrons occupying the same pz orbital.
Within a molecular Hamiltonian appropriate for correlated π-electron
systems, we show that optical excitations polarized parallel to the nanotube
axes in the so-called metallic single-walled carbon nanotubes are to excitons.
Our calculated absolute exciton energies in twelve different metallic
single-walled carbon nanotubes, with diameters in the range 0.8 - 1.4 nm, are
in nearly quantitative agreement with experimental results. We have also
calculated the absorption spectrum for the (21,21) single-walled carbon
nanotube in the E22 region. Our calculated spectrum gives an excellent fit
to the experimental absorption spectrum. In all cases our calculated exciton
binding energies are only slightly smaller than those of semiconducting
nanotubes with comparable diameters, in contradiction to results obtained
within the {\it ab initio} approach, which predicts much smaller binding
energies. We ascribe this difference to the difficulty of determining the
behavior of systems with strong on-site Coulomb interactions within theories
based on the density functional approach. As in the semiconducting nanotubes we
predict in the metallic nanotubes a two-photon exciton above the lowest
longitudinally polarized exciton that can be detected by ultrafast pump-probe
spectroscopy. We also predict a subgap absorption polarized perpendicular to
the nanotube axes below the lowest longitudinal exciton, blueshifted from the
exact midgap by electron-electron interactions