192 research outputs found

    Environmental and neuroendocrine control of breeding activity in the dromedary camel

    Get PDF
    The dromedary camel (Camelus dromedarius), a well-adapted desert mammal, is a seasonal breeder whose sexual activity occurs during the winter and spring. These periods coincide with food resources and climate conditions are favorable for offspring’s survival. The mechanisms involved in the control of this seasonality however still need to be elucidated. The aim of this review is to describe the reproductive patterns of the dromedary camel. This includes the geographical seasonal breeding distribution of this species taking into account the role of various physical environmental parameters notably temperature, day length and the amount of rainfall. Further, various aspects of seasonal breeding in male and female camels are discussed as well as the neuroendocrine factors that may control seasonal such phenomena. Finally, the putative roles of two hypothalamic neuropeptides, kisspeptin and (Arg) (Phe) related peptide, are proposed for the control of camel’s seasonal reproduction

    Le contrôle environnemental et neuroendocrinien de l’activité saisonnière de la reproduction chez le dromadaire

    Get PDF
    Le dromadaire (Camelus dromedarius), qui est un mammifère bien adapté au désert est une espèce à reproduction saisonnière. Sa saison sexuelle a lieu durant l’hiver et le printemps. Ces périodes coïncident avec l’abondance des ressources alimentaires et des conditions climatiques favorables pour la survie de la progéniture. Toutefois les mécanismes impliqués dans le contrôle de cette saisonnalité restent encore mal élucidés. L’objectif de cette revue est de décrire les caractéristiques de la reproduction chez le dromadaire. Cela inclue la distribution géographique de sa saison sexuelle et son déclenchement possible par plusieurs paramètres environnementaux physiques, notamment la température ambiante, la photopériode et la quantité de précipitations. De plus, plusieurs aspects de cette saisonnalité ont été discutés chez le mâle et la femelle. Finalement, cette revue analyse les facteurs neuroendocriniens impliqués dans la saisonnalité de reproduction, notamment, le rôle putatif de deux neuropeptides hypothalamiques, le kisspeptin et le (Arg) (Phe) peptide apparenté. Mots-clés: Dromadaire, saisonnalité de reproduction, précipitations, photopériode, température ambiante, disponibilité alimentaire, kisspeptin, RFRP. The dromedary camel (Camelus dromedarius), a well-adapted desert mammal, is a seasonal breeder whose sexual activity occurs during the winter and spring. These periods coincide with food resources and climate conditions are favorable for offspring’s survival. The mechanisms involved in the control of this seasonality however still need to be elucidated. The aim of this review is to describe the reproductive patterns of the dromedary camel. This includes the geographical seasonal breeding distribution of this species taking into account the role of various physical environmental parameters notably temperature, day length and the amount of rainfall. Further, various aspects of seasonal breeding in male and female camels are discussed as well as the neuroendocrine factors that may control seasonal such phenomena. Finally, the putative roles of two hypothalamic neuropeptides, kisspeptin and (Arg) (Phe) related peptide, are proposed for the control of camel’s seasonal reproduction. Keywords: Dromedary camel, seasonal breeding, rainfall, photoperiod, ambient temperature, food availability, Kisspeptin, RFRP

    Thyroid hormone receptors are required for the melatonin-dependent control of Rfrp gene expression in mice.

    Get PDF
    Mammals adapt to seasons using a neuroendocrine calendar defined by the photoperiodic change in the nighttime melatonin production. Under short photoperiod, melatonin inhibits the pars tuberalis production of TSHβ, which, in turn, acts on tanycytes to regulate the deiodinase 2/3 balance resulting in a finely tuned seasonal control of the intra-hypothalamic thyroid hormone T3. Despite the pivotal role of this T3 signaling for synchronizing reproduction with the seasons, T3 cellular targets remain unknown. One candidate is a population of hypothalamic neurons expressing Rfrp, the gene encoding the RFRP-3 peptide, thought to be integral for modulating rodent's seasonal reproduction. Here we show that nighttime melatonin supplementation in the drinking water of melatonin-deficient C57BL/6J mice mimics photoperiodic variations in the expression of the genes Tshb, Dio2, Dio3, and Rfrp, as observed in melatonin-proficient mammals. Notably, we report that this melatonin regulation of Rfrp expression is no longer observed in mice carrying a global mutation of the T3 receptor, TRα, but is conserved in mice with a selective neuronal mutation of TRα. In line with this observation, we find that TRα is widely expressed in the tanycytes. Altogether, our data demonstrate that the melatonin-driven T3 signal regulates RFRP-3 neurons through non-neuronal, possibly tanycytic, TRα.journal article2020 Aug 102020 08 10importe

    Food-anticipatory activity in Syrian hamsters: behavioral and molecular responses in the hypothalamus according to photoperiodic conditions.

    Get PDF
    When food availability is restricted, animals adjust their behavior according to the timing of food access. Most rodents, such as rats and mice, and a wide number of other animals express before timed food access a bout of activity, defined as food-anticipatory activity (FAA). One notable exception amongst rodents is the Syrian hamster, a photoperiodic species that is not prone to express FAA. The present study was designed to understand the reasons for the low FAA in that species. First, we used both wheel-running activity and general cage activity to assess locomotor behavior. Second, the possible effects of photoperiod was tested by challenging hamsters with restricted feeding under long (LP) or short (SP) photoperiods. Third, because daytime light may inhibit voluntary activity, hamsters were also exposed to successive steps of full and skeleton photoperiods (two 1-h light pulses simulating dawn and dusk). When hamsters were exposed to skeleton photoperiods, not full photoperiod, they expressed FAA in the wheel independently of daylength, indicating that FAA in the wheel is masked by daytime light under full photoperiods. During FAA under skeleton photoperiods, c-Fos expression was increased in the arcuate nuclei independently of the photoperiod, but differentially increased in the ventromedial and dorsomedial hypothalamic nuclei according to the photoperiod. FAA in general activity was hardly modulated by daytime light, but was reduced under SP. Together, these findings show that food-restricted Syrian hamsters are not prone to display FAA under common laboratory conditions, because of the presence of light during daytime that suppresses FAA expression in the wheel.journal articleresearch support, non-u.s. gov't20152015 05 13importedFunding: This work was supported by doctoral scholarship from Fundação de Amparo à Pesquisa do Estado do São Paulo (São Paulo State, Brazil) to RFDF, and by Centre National de la Recherche Scientifique and University of Strasbourg (France) to EC, VS and PP

    Identification of Pathway-Biased and Deleterious Melatonin Receptor Mutants in Autism Spectrum Disorders and in the General Population

    Get PDF
    Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Δ502–505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients

    The effect of an intracerebroventricular injection of metformin or AICAR on the plasma concentrations of melatonin in the ewe: potential involvement of AMPK?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is now widely accepted that AMP-activated protein kinase (AMPK) is a critical regulator of energy homeostasis. Recently, it has been shown to regulate circadian clocks. In seasonal breeding species such as sheep, the circadian clock controls the secretion of an endogenous rhythm of melatonin and, as a consequence, is probably involved in the generation of seasonal rhythms of reproduction. Considering this, we identified the presence of the subunits of AMPK in different hypothalamic nuclei involved in the pre- and post-pineal pathways that control seasonality of reproduction in the ewe and we investigated if the intracerebroventricular (i.c.v.) injection of two activators of AMPK, metformin and AICAR, affected the circadian rhythm of melatonin in ewes that were housed in constant darkness. In parallel the secretion of insulin was monitored as a peripheral metabolic marker. We also investigated the effects of i.c.v. AICAR on the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in brain structures along the photoneuroendocrine pathway to the pineal gland.</p> <p>Results</p> <p>All the subunits of AMPK that we studied were identified in all brain areas that were dissected but with some differences in their level of expression among structures. Metformin and AICAR both reduced (p < 0.001 and p < 0.01 respectively) the amplitude of the circadian rhythm of melatonin secretion independently of insulin secretion. The i.c.v. injection of AICAR only tended (p = 0.1) to increase the levels of phosphorylated AMPK in the paraventricular nucleus but significantly increased the levels of phosphorylated ACC in the paraventricular nucleus (p < 0.001) and in the pineal gland (p < 0.05).</p> <p>Conclusions</p> <p>Taken together, these results suggest a potential role for AMPK on the secretion of melatonin probably acting trough the paraventricular nucleus and/or directly in the pineal gland. We conclude that AMPK may act as a metabolic cue to modulate the rhythm of melatonin secretion.</p

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon
    corecore