94 research outputs found

    Reproductive biology of Cattleya eldorado, a species of Orchidaceae from the Amazonian white sand campinas

    Get PDF
    The orchid plants are highly prized for their lush exotic flowers. It is the largest plant family with more than 24000 species, which indicates a high diversity of forms and adaptations to different environments, including the capacity to attract, deceive and manipulate visitors involved in cross-pollination. Cattleya eldorado occurs in areas of white sand campinas, a typical vegetation type of the Amazon region, which is under strong anthropogenic pressure. This work's main objectives to know the biological processes of C. eldorado providing subsidies to maintain and manage it in its natural habitat. This study was conducted from 2000 to 2006 in the Campina Biological Reserve, during its flowering period. C. eldorado is an epiphytic orchid species that has the melittophyly syndrome and is adapted to its pollinator, the bee Eulaema mocsaryi recognizing their flowers by smell and by visual stimuli, through their color and reflection of ultraviolet light. C. eldorado is self-compatible, even if it requires a pollinating agent for the transfer of the pollinarium until its deposition in the stigmatic cavity of the flower.", 'enAs Orchidaceae são muito apreciadas por suas flores exóticas e exuberantes. É a maior família de plantas apresentando mais de 24000 espécies, o que denota uma alta diversidade de formas e adaptações a diferentes ambientes, como também para atração, engano e manipulação de visitantes na realização da polinização cruzada. Cattleya eldorado ocorre em áreas de campinas, que são formações vegetais típicas da região amazônica, que se encontram sob forte ação antrópica. Este trabalho tem como um de seus principais objetivos conhecer parte dos processos biológicos de C. eldorado fornecendo subsídios para conservá-la e manejá-la em seu habitat natural. Este estudo foi desenvolvido na Reserva Biológica de Campina, de 2000 a 2006, durante a sua floração. C. eldorado é uma espécie epifítica que apresenta a síndrome de melitofilia, estando adaptada ao seu polinizador, a abelha Eulaema mocsaryi, que reconhece suas flores pelo odor e pelo estímulo visual através de sua coloração e reflexão de luz ultravioleta. C. eldorado é uma espécie autocompatível, embora necessite de um agente polinizador para a transferência do polinário até sua deposição na cavidade estigmática da flor

    Status Report Of The Schenberg Gravitational Wave Antenna

    Get PDF
    Here we present a status report of the Schenberg antenna. In the past three years it has gone to a radical upgrading operation, in which we have been installing a 1K pot dilution refrigerator, cabling and amplifiers for nine transducer circuits, designing a new suspension and vibration isolation system for the microstrip antennas, and developing a full set of new transducers, microstrip antennas, and oscillators. We are also studying an innovative approach, which could transform Schenberg into a broadband gravitational wave detector.3631Aguiar, O.D., (2002) Class. Quantum Grav., 19, p. 1949Aguiar, O.D., (2004) Class. Quantum Grav., 21, pp. S457Aguiar, O.D., (2005) Class. Quantum Grav., 22, pp. S209Aguiar, O.D., (2006) Class. Quantum Grav., 23, pp. S239Aguiar, O.D., (2008) Class. Quantum Grav., 25, p. 114042Costa, C.A., (2008) Class. Quantum Grav., 25, p. 184002Johnson, W.W., Merkowitz, S.M., (1993) Phys. Rev. Lett., 70, p. 2367Coccia, E., Lobo, J.A., Ortega, J.A., (1995) Phys. Rev. D, 52, p. 3735Thorne, K.S., (1978) Phys. Rev. Lett., 40, p. 667Tobar, M.E., Ivanov, E.N., Blair, D.G., (2000) Gen. Rel. Grav., 32, p. 1799De Waard, (2005) Class. Quantum Grav., 22, pp. S215Vinet, J.-Y., (2010) Research in Astron Astrophys., 10, p. 956Costa, C.A., Aguiar, O.D., Magalhães, N.S., (2004) Class. Quantum Grav., 21, pp. S827Forward, R.L., (1971) Gen. Rel. Grav., 2, p. 149Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V., Will, C.M., (1973) Phys. Rev. Lett., 30, p. 884Bianchi, M., Coccia, E., Colacino, C.N., Fafone, V., Fucito, F., (1996) Class. Quantum Grav., 13, p. 2865Andrade, L.A., (2009) Microwave and Optical Tech. Lett., 51, p. 1120Furtado, S.R., (2012), in preparationIvanov, E.N., Hartnett, J.G., Tobar, M.E., (2000) IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 47, p. 1526Pimentel, G.L., (2008) J. Phys. Conf. Series, 122, p. 012028Aguiar, (2009) Int. J. Modern Phys. D, 18, p. 2317Furtado, S.R., (2009), Ph.D. Thesis at INPE, not publishedBraginsky, V.B., Vorontsov, Y.I., Thorne, K.S., (1980) Science, 209, p. 547Thorne, K.S., The Quantum Limit for Gravitational-Wave Detectors and Methods of Circumventing It (1979) Sources of Gravitational Waves, p. 49. , ed. L L Smarr, Cambridge University Press, Cambridge, US

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset
    corecore