15,236 research outputs found
Subsonic aerodynamic and flutter characteristics of several wings calculated by the SOUSSA P1.1 panel method
The SOUSSA (steady, oscillatory, and unsteady subsonic and supersonic aerodynamics) program is the computational implementation of a general potential flow analysis (by the Green's function method) that can generate pressure distributions on complete aircraft having arbitrary shapes, motions and deformations. Some applications of the initial release version of this program to several wings in steady and oscillatory motion, including flutter are presented. The results are validated by comparisons with other calculations and experiments. Experiences in using the program as well as some recent improvements are described
One-to-one full scale simulations of laser wakefield acceleration using QuickPIC
We use the quasi-static particle-in-cell code QuickPIC to perform full-scale,
one-to-one LWFA numerical experiments, with parameters that closely follow
current experimental conditions. The propagation of state-of-the-art laser
pulses in both preformed and uniform plasma channels is examined. We show that
the presence of the channel is important whenever the laser self-modulations do
not dominate the propagation. We examine the acceleration of an externally
injected electron beam in the wake generated by 10 J laser pulses, showing that
by using ten-centimeter-scale plasma channels it is possible to accelerate
electrons to more than 4 GeV. A comparison between QuickPIC and 2D OSIRIS is
provided. Good qualitative agreement between the two codes is found, but the 2D
full PIC simulations fail to predict the correct laser and wakefield
amplitudes.Comment: 5 pages, 5 figures, accepted for publication IEEE TPS, Special Issue
- Laser & Plasma Accelerators - 8/200
Transition from Knudsen to molecular diffusion in activity of absorbing irregular interfaces
We investigate through molecular dynamics the transition from Knudsen to
molecular diffusion transport towards 2d absorbing interfaces with irregular
geometry. Our results indicate that the length of the active zone decreases
continuously with density from the Knudsen to the molecular diffusion regime.
In the limit where molecular diffusion dominates, we find that this length
approaches a constant value of the order of the system size, in agreement with
theoretical predictions for Laplacian transport in irregular geometries.
Finally, we show that all these features can be qualitatively described in
terms of a simple random-walk model of the diffusion process.Comment: 4 pages, 4 figure
The Use of Sunn Hemp as Forage in Florida
Sunn hemp (Crotalaria juncea L.) is a warm-season annual legume that has been widely used as cover crop; however, there is potential to use sunn hemp as forage in subtropical regions. The objective of this study was to evaluate management practices to improve the efficiency of using sunn hemp as a forage crop. The study was conducted in Ona, Florida, USA from 2016 to 2018 and tested the factorial arrangement of five sunn hemp genotypes (Crescent Sunn, Ubon, Blue Leaf, and AU Golden) and two harvest times (60 d after seeding or flowering) with four replicates. There was a cultivar × harvest period effect on HA, crude protein (CP), and in vitro digestible organic matter (IVDOM) concentrations. Herbage accumulation was greater at flowering than 60 d harvest for all cultivars; however, the magnitude of increase was greater for Blue Leaf and Crescent Sun than AU Golden and Ubon. AU Golden and Ubon flowered at 83 and 92 d after seeding, while Blue Leaf and Crescent Sun flowered or were harvested at 166 d after seeding. AU Golden and Crescent Sunn had the greatest CP at 60 d harvest, and Blue Leaf and Ubon had the least CP concentrations. AU Golden and Crescent Sun had the greatest IVDOM at 60-d harvest; however, AU Golden and Ubon had greater IVDOM than Blue Leaf and Crescent Sun at flowering. Sunn hemp may be a feasible warm-season annual legume to be used in forage systems in Florida and harvest 60 d after seeding would results in forage with greater nutritive value
THERMAL PERFORMANCE AND FLAME TEMPERATURES ON LPG RADIAL BURNERS IN DOMESTIC COOKERS
The objective is to investigate radial burners through experimental tests, looking for its thermal performance behavior. Gas burners in domestic cookers operate on LPG, typically with two different geometries and five thermal power conditions. Usually, those thermal equipment lacks information on its whole operating conditions range for higher energy conversion efficiency and lower fuel consumption; it is not pointed out by the manufacturer or by energy efficiency labeling, what could result in a recommendation for widely effective performance. Appropriate instrumentation was used to carry out the measurements and methodology used as a guideline regulations from INMETRO/CONPET, ABNT - Brazilian Technical Standards Normative, and ANP - National Agency of Petroleum, Natural Gas and Biofuels. Experimental measurements and uncertainties are for the following parameters: fuel mass consumption (kg.s-1), test time elapsed (s), temperature (°C), water mass (kg) and flame temperature by K-type thermocouples (quantitative) and a thermal camera (qualitative). Main conclusions are: a) Operating domestic cookers with handle position selector on middle position (TP3) provides almost the same temperature rise as maximum fuel consumption (TP5), i.e., ΔT in the water container; b) Heat is better transferred (Qgas → Qwater) with the handle position selector fully opened (TP5@B1) and just before fully opening (TP4@B2); c) A non-linear behavior occurs for ηThermal, when moving forward the handle position selector; maximum efficiency occurs at fully open (TP5@B2) and middle opening (TP3@B1); d) Higher values for TPexperimental occurs for B2, in comparison to B1, in whole operational condition ranges; differences are mainly due to geometric parameters (ARB2/ARB1~0.82). In general, B2 has a better geometric design; e) Uncertainty analysis indicate values lower than ±3%, proving to be a suitable methodology for the experimental results in this work; f) Flame temperatures are entirely consistent with both, ηThermal and heat energy delivered, reaching higher temperature values at TP4 for both burners; 751.5°C (B1) and 830.7°C (B2)
Optical studies of the correlation between interface disorder and the photoluminescence line shape in GaAs/InGaP quantum wells
Photoluminescence (PL) and excitation PL measurements have been performed at different temperatures in a number of lattice-matched GaAs/In0.49Ga0.51P quantum wells, where the uctuations of the potential energy are comparable with the thermal energy of the photocreated carriers. Two samples with different well widths allow to observe a series of anomalous e ects in their optical response. The observed effects are related to the disorder in the interface, characterizing uctuations in the confinement potential energy. It is proposed that the carrier relaxation processes occur either at the local minima or at the absolute minimum of the confinement potential, depending on the ratio of the thermal energy and the magnitude of the potential fluctuations.314317Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
On the rise of proton-proton cross-sections at high energies
The rise of the total, elastic and inelastic hadronic cross sections at high
energies is investigated by means of an analytical parametrization, with the
exponent of the leading logarithm contribution as a free fit parameter. Using
derivative dispersion relations with one subtraction, two different fits to
proton-proton and antiproton-proton total cross section and rho parameter data
are developed, reproducing well the experimental information in the energy
region 5 GeV - 7 TeV. The parametrization for the total cross sections is then
extended to fit the elastic (integrated) cross section data in the same energy
region, with satisfactory results. From these empirical results we extract the
energy dependence of several physical quantities: inelastic cross section,
ratios elastic/total, inelastic/total cross sections, ratio
total-cross-section/elastic-slope, elastic slope and optical point. All data,
fitted and predicted, are quite well described. We find a statistically
consistent solution indicating: (1) an increase of the hadronic cross sections
with the energy faster than the log-squared bound by Froissart and Martin; (2)
asymptotic limits 1/3 and 2/3 for the ratios elastic/total and inelastic/total
cross sections, respectively, a result in agreement with unitarity. These
indications corroborate recent theoretical arguments by Ya. I. Azimov on the
rise of the total cross section.Comment: 35 pages, 12 figures, discussions improved with further
clarifications, references added and updated, one note added, results and
conclusions unchanged. Version to be published in J. Phys. G: Nucl. Part.
Phy
CMS Connect
The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users
Optimally combining dynamical decoupling and quantum error correction
We show how dynamical decoupling (DD) and quantum error correction (QEC) can
be optimally combined in the setting of fault tolerant quantum computing. To
this end we identify the optimal generator set of DD sequences designed to
protect quantum information encoded into stabilizer subspace or subsystem
codes. This generator set, comprising the stabilizers and logical operators of
the code, minimizes a natural cost function associated with the length of DD
sequences. We prove that with the optimal generator set the restrictive
local-bath assumption used in earlier work on hybrid DD-QEC schemes, can be
significantly relaxed, thus bringing hybrid DD-QEC schemes, and their
potentially considerable advantages, closer to realization.Comment: 6 pages, 1 figur
- …