920 research outputs found

    Recharge assessment in the context of expanding agricultural activity: Urucuia Aquifer System, western State of Bahia, Brazil

    Get PDF
    Groundwater recharge rate estimation is crucial to sustainable development of aquifers in intensely pumped regions, such as the Urucuia Aquifer System (UAS). A sedimentary aquifer in Western Bahia, Brazil, that underlies one of the major agricultural areas of the country where there has been major growth of irrigated areas. This study seeks to evaluate the recharge component of the water budget in the UAS area, based on three complementary techniques. The double-ring infiltrometer test was used to evaluate surface infiltration capacity, an important control on recharge. Water level data from wells (2011–2019 period, 19 wells) in the Brazilian Geological Survey’s Integrated Groundwater Monitoring Network (RIMAS-CPRM) was used to estimate the aquifer recharge using the water table fluctuation (WTF) method. Additionally, this study used the Soil Water Assessment Tool (SWAT) model in two selected sub-basins to estimate deep recharge from the surface hydrological data. The results of the infiltrometer tests show a notable difference in the infiltration rates between the natural vegetation zones and cropped areas. The WTF and SWAT simulations results suggest similar ranges of recharge rate (an average of 24% of precipitation, in both methods). Results of the study indicate equivalence of these methods to estimate the recharge in sedimentary unconfined aquifers as UAS

    Role of ventral medullary catecholaminergic neurons for respiratory modulation of sympathetic outflow in rats

    Get PDF
    Abstract Sympathetic activity displays rhythmic oscillations generated by brainstem inspiratory and expiratory neurons. Amplification of these rhythmic respiratory-related oscillations is observed in rats under enhanced central respiratory drive or during development of neurogenic hypertension. Herein, we evaluated the involvement of ventral medullary sympatho-excitatory catecholaminergic C1 neurons, using inhibitory Drosophila allatostatin receptors, for the enhanced expiratory-related oscillations in sympathetic activity in rats submitted to chronic intermittent hypoxia (CIH) and following activation of both peripheral (hypoxia) and central chemoreceptors (hypercapnia). Pharmacogenetic inhibition of C1 neurons bilaterally resulted in reductions of their firing frequency and amplitude of inspiratory-related sympathetic activity in rats in normocapnia, hypercapnia or after CIH. In contrast, hypercapnia or hypoxia-induced enhanced expiratory-related sympathetic oscillations were unaffected by C1 neuronal inhibition. Inhibition of C1 neurons also resulted in a significant fall in arterial pressure and heart rate that was similar in magnitude between normotensive and CIH hypertensive rats, but basal arterial pressure in CIH rats remained higher compared to controls. C1 neurons play a key role in regulating inspiratory modulation of sympathetic activity and arterial pressure in both normotensive and CIH hypertensive rats, but they are not involved in the enhanced late-expiratory-related sympathetic activity triggered by activation of peripheral or central chemoreceptors

    Articaine in functional NLC show improved anesthesia and anti-inflammatory activity in zebrafish

    Get PDF
    Indexación ScopusAnesthetic failure is common in dental inflammation processes, even when modern agents, such as articaine, are used. Nanostructured lipid carriers (NLC) are systems with the potential to improve anesthetic efficacy, in which active excipients can provide desirable properties, such as anti-inflammatory. Coupling factorial design (FD) for in vitro formulation development with in vivo zebrafish tests, six different NLC formulations, composed of synthetic (cetyl palmitate/triglycerides) or natural (avocado butter/olive oil/copaiba oil) lipids were evaluated for loading articaine. The formulations selected by FD were physicochemically characterized, tested for shelf stability and in vitro release kinetics and had their in vivo effect (anti-inflammatory and anesthetic effect) screened in zebrafish. The optimized NLC formulation composed of avocado butter, copaiba oil, Tween 80 and 2% articaine showed adequate physicochemical properties (size = 217.7 ± 0.8 nm, PDI = 0.174 ± 0.004, zeta potential = − 40.2 ± 1.1 mV, %EE = 70.6 ± 1.8) and exhibited anti-inflammatory activity. The anesthetic effect on touch reaction and heart rate of zebrafish was improved to 100 and 60%, respectively, in comparison to free articaine. The combined FD/zebrafish approach was very effective to reveal the best articaine-in-NLC formulation, aiming the control of pain at inflamed tissues. © 2020, The Author(s).https://www-nature-com.recursosbiblioteca.unab.cl/articles/s41598-020-76751-

    Biological properties of natural dyes

    Get PDF
    El propósito del presente trabajo es evaluar el aumento en el uso de colorantes naturales en la industria alimentaria y la posibilidad de desarrollar nuevos medicamentos gracias a sus diversas propiedades biológicas. La presente revisión aborda las principales actividades biológicas observadas en los carotenoides y las antocianinas y pone énfasis en el amplio uso del extracto de achiote o bija (Bixa orellana L.) y de la curcumina (Curcuma longa) en estas actividades.The aim of the present work is to evaluate the increase uses of natural colorants in the nourishing industry and in the promising of new medicines due its several biological properties. In this review the main biological activities observed in the carotenóids and the anthocyianins are boarded, with emphasis in the wide use of the urucum‘s extract from Bixa orellana L.) and of curcumin from Curcuma longa in these activities

    Chronic treatment with ivabradine does not affect cardiovascular autonomic control in rats

    Get PDF
    A low resting heart rate (HR) would be of great benefit in cardiovascular diseases. Ivabradine-a novel selective inhibitor of hyperpolarization-activated cyclic nucleotide gated (HCN) channels- has emerged as a promising HR lowering drug. Its effects on the autonomic HR control are little known. This study assessed the effects of chronic treatment with ivabradine on the modulatory, reflex and tonic cardiovascular autonomic control and on the renal sympathetic nerve activity (RSNA). Male Wistar rats were divided in 2 groups, receiving intraperitoneal injections of vehicle (VEH) or ivabradine (IVA) during 7 or 8 consecutive days. Rats were submitted to vessels cannulation to perform arterial blood pressure (AP) and HR recordings in freely moving rats. Time series of resting pulse interval and systolic AP were used to measure cardiovascular variability parameters. We also assessed the baroreflex, chemoreflex and the Bezold-Jarish reflex sensitivities. To better evaluate the effects of ivabradine on the autonomic control of the heart, we performed sympathetic and vagal autonomic blockade. As expected, ivabradine-treated rats showed a lower resting (VEH: 362 \ufffd 16 bpm vs. IVA: 260 \ufffd 14 bpm, p = 0.0005) and intrinsic HR (VEH: 369 \ufffd 9 bpm vs. IVA: 326 \ufffd 11 bpm, p = 0.0146). However, the chronic treatment with ivabradine did not change normalized HR spectral parameters LF (nu) (VEH: 24.2 \ufffd 4.6 vs. IVA: 29.8 \ufffd 6.4; p > 0.05); HF (nu) (VEH: 75.1 \ufffd 3.7 vs. IVA: 69.2 \ufffd 5.8; p > 0.05), any cardiovascular reflexes, neither the tonic autonomic control of the HR (tonic sympathovagal index; VEH: 0.91\ufffd 0.02 vs. IVA: 0.88 \ufffd 0.03, p = 0.3494). We performed the AP, HR and RSNA recordings in urethane-anesthetized rats. The chronic treatment with ivabradine reduced the resting HR (VEH: 364 \ufffd 12 bpm vs. IVA: 207 \ufffd 11 bpm, p < 0.0001), without affecting RSNA (VEH: 117 \ufffd 16 vs. IVA: 120 \ufffd 9 spikes/s, p = 0.9100) and mean arterial pressure (VEH: 70 \ufffd 4 vs. IVA: 77 \ufffd 6 mmHg, p = 0.3293). Our results suggest that, in health rats, the long-term treatment with ivabradine directly reduces the HR without changing the RSNA modulation and the reflex and tonic autonomic control of the heart

    A pre formulation study of tetracaine loaded in optimized nanostructured lipid carriers

    Get PDF
    Tetracaine TTC is a local anesthetic broadly used for topical and spinal blockade, despite its systemic toxicity. Encapsulation in nanostructured lipid carriers NLC may prolong TTC delivery at the site of injection, reducing such toxicity. This work reports the development of NLC loading 4 TTC. Structural properties and encapsulation efficiency EE amp; 8201; gt; amp; 8201;63 guided the selection of three pre formulations of different lipid composition, through a 23 factorial design of experiments DOE . DLS and TEM analyses revealed average sizes 193 220 nm , polydispersity lt; amp; 8201;0.2 , zeta potential amp; 8722; amp; 8201;21.8 to amp; 8722; amp; 8201;30.1 mV and spherical shape of the nanoparticles, while FTIR ATR, NTA, DSC, XRD and SANS provided details on their structure and physicochemical stability over time. Interestingly, one optimized pre formulation CP TRANS TTC showed phase separation after 4 months, as predicted by Raman imaging that detected lack of miscibility between its solid cetyl palmitate and liquid Transcutol lipids. SANS analyses identified lamellar arrangements inside such nanoparticles, the thickness of the lamellae been decreased by TTC. As a result of this combined approach DOE and biophysical techniques two optimized pre formulations were rationally selected, both with great potential as drug delivery systems, extending the release of the anesthetic gt; amp; 8201;48 h and reducing TTC cytotoxicity against Balb c 3T3 cell
    corecore