28 research outputs found

    Delayed mucosal antiviral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished coronavirus disease 2019 (COVID-19) severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalized with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0–5 days after symptom onset) or late (6–20 days after symptom onset) phase. Results Patients that survived severe COVID-19 showed interferon (IFN)-dominated mucosal immune responses (IFN-γ, CXCL10, and CXCL13) early in infection. These early mucosal responses were absent in patients who would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by interleukin 2 (IL-2), IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal antiviral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19

    On-Flow LC-MS/MS method for screening of xanthine oxidase inhibitors

    No full text
    The screening of compounds is the initial step in research for the development of new drugs. For this reason, the availability of fast and reliable tools for the screening of a large number of compounds becomes essential. Among the therapeutic targets, the enzyme xanthine oxidase (XO) is of great interest for its importance as a biological source of superoxide radicals, which contribute to the oxidative stress on organisms and are involved in many pathological processes. In the present study, we validated a new method using an immobilized capillary enzyme reactor in an LC system directly coupled to triple quadrupole mass spectrometry to screen for XO ligands. The use of mass spectrometry provided selectivity and speed to the system, eliminating the analytical separation step. The Michaelis-Menten constant (KM) value determined for the immobilized enzyme was 14.5 ± 0.4 μmol L−1, which is consistent with the value previously reported for the XO-ICER with UV detection in a 2D LC method. The on-line approach was successfully applied to assay the XO inhibitory activities of thirty isolated compounds from different classes of natural products and provided greater productivity (288 analysis/day) than 2D LC method (84 analysis/day) of screened samples181CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP154061/2018-22016/24087-
    corecore