21 research outputs found

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice

    Get PDF
    Although soluble oligomeric and protofibrillar assemblies of Aβ-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Aβ-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds ‘forward' in a near-irreversible manner from the monomeric Aβ peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Aβ amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Aβ but rather toward soluble amyloid protofibrils. We characterized these ‘backward' Aβ protofibrils generated from mature Aβ fibers and compared them with previously identified ‘forward' Aβ protofibrils obtained from the aggregation of fresh Aβ monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Aβ-aggregates that could readily be activated by exposure to biological lipids

    Diploids in the Cryptococcus neoformans Serotype A Population Homozygous for the α Mating Type Originate via Unisexual Mating

    Get PDF
    The ubiquitous environmental human pathogen Cryptococcus neoformans is traditionally considered a haploid fungus with a bipolar mating system. In nature, the α mating type is overwhelmingly predominant over a. How genetic diversity is generated and maintained by this heterothallic fungus in a largely unisexual α population is unclear. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions generating both diploid intermediates and haploid recombinant progeny. Same-sex mating (α-α) also occurs in nature as evidenced by the existence of natural diploid αADα hybrids that arose by fusion between two α cells of different serotypes (A and D). How significantly this novel sexual style contributes to genetic diversity of the Cryptococcus population was unknown. In this study, ∼500 natural C. neoformans isolates were tested for ploidy and close to 8% were found to be diploid by fluorescence flow cytometry analysis. The majority of these diploids were serotype A isolates with two copies of the α MAT locus allele. Among those, several are intra-varietal allodiploid hybrids produced by fusion of two genetically distinct α cells through same-sex mating. The majority, however, are autodiploids that harbor two seemingly identical copies of the genome and arose via either endoreplication or clonal mating. The diploids identified were isolated from different geographic locations and varied genotypically and phenotypically, indicating independent non-clonal origins. The present study demonstrates that unisexual mating produces diploid isolates of C. neoformans in nature, giving rise to populations of hybrids and mixed ploidy. Our findings underscore the importance of same-sex mating in shaping the current population structure of this important human pathogenic fungus, with implications for mechanisms of selfing and inbreeding in other microbial pathogens

    The unfolded protein response (UPR) pathway in Cryptococcus

    No full text

    Basic principles of the virulence of Cryptococcus

    Get PDF
    Among fungal pathogens, Cryptococcus neoformans has gained great importance among the scientific community of several reasons. This fungus is the causative agent of cryptococcosis, a disease mainly associated to HIV immunosuppression and characterized by the appearance of meningoencephalitis. Cryptococcal meningitis is responsible for hundreds of thousands of deaths every year. Research of the pathogenesis and virulence mechanisms of this pathogen has focused on three main different areas: Adaptation to the host environment (nutrients, pH, and free radicals), mechanism of immune evasion (which include phenotypic variations and the ability to behave as a facultative intracellular pathogen), and production of virulence factors. Cryptococcus neoformans has two phenotypic characteristics, the capsule and synthesis of melanin that have a profound effect in the virulence of the yeast because they both have protective effects and induce host damage as virulence factors. Finally, the mechanisms that result in dissemination and brain invasion are also of key importance to understand cryptococcal disease. In this review, I will provide a brief overview of the main mechanisms that makes C. neoformans a pathogen in susceptible patients. Abbreviations: RNS: reactive nitrogen species; BBB: brain blood barrier; GXM: glucuronoxylomannan; GXMGal: glucuronoxylomannogalacta
    corecore