198 research outputs found
Radiation-induced Assembly of Rad51 and Rad52 Recombination Complex Requires ATM and c-Abl
Cells from individuals with the recessive cancer-prone disorder ataxia telangiectasia (A-T) are hypersensitive to ionizing radiation (I-R). ATM (mutated in A-T) is a protein kinase whose activity is stimulated by I-R. c-Abl, a nonreceptor tyrosine kinase, interacts with ATM and is activated by ATM following I-R. Rad51 is a homologue of bacterial RecA protein required for DNA recombination and repair. Here we demonstrate that there is an I-R-induced Rad51 tyrosine phosphorylation, and this induction is dependent on both ATM and c-Abl. ATM, c-Abl, and Rad51 can be co-immunoprecipitated from cell extracts. Consistent with the physical interaction, c-Abl phosphorylates Rad51 in vitro and in vivo. In assays using purified components, phosphorylation of Rad51 by c-Abl enhances complex formation between Rad51 and Rad52, which cooperates with Rad51 in recombination and repair. After I-R, an increase in association between Rad51 and Rad52 occurs in wild-type cells but not in cells with mutations that compromise ATM or c-Abl. Our data suggest signaling mediated through ATM, and c-Abl is required for the correct post-translational modification of Rad51, which is critical for the assembly of Rad51 repair protein complex following I-R
Novel De Novo Mutation in Sulfonylurea Receptor 1 Presenting as Hyperinsulinism in Infancy Followed by Overt Diabetes in Early Adolescence
OBJECTIVE—Congenital hyperinsulinism, usually associated with severe neonatal hypoglycemia, may progress to diabetes, typically during the 4th decade of life in nonpancreatectomized patients. We aimed to genotype the ATP-sensitive K+ channel in a 10.5-year-old girl presenting with overt diabetes following hyperinsulinism in infancy
A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications
AIMS/HYPOTHESIS: Heterozygous activating mutations in the pancreatic ATP-sensitive K+ channel cause permanent neonatal diabetes mellitus (PNDM). This results from a decrease in the ability of ATP to close the channel, which thereby suppresses insulin secretion. PNDM mutations that cause a severe reduction in ATP inhibition may produce additional symptoms such as developmental delay and epilepsy. We identified a heterozygous mutation (L164P) in the pore-forming (Kir6.2) subunit of the channel in three unrelated patients and examined its functional effects. METHODS: The patients (currently aged 2, 8 and 20 years) developed diabetes shortly after birth. The two younger patients attempted transfer to sulfonylurea therapy but were unsuccessful (up to 1.1 mg kg(-1) day(-1)). They remain insulin dependent. None of the patients displayed neurological symptoms. Functional properties of wild-type and mutant channels were examined by electrophysiology in Xenopus oocytes. RESULTS: Heterozygous (het) and homozygous L164P K(ATP) channels showed a marked reduction in channel inhibition by ATP. Consistent with its predicted location within the pore, L164P enhanced the channel open state, which explains the reduction in ATP sensitivity. HetL164P currents exhibited greatly increased whole-cell currents that were unaffected by sulfonylureas. This explains the inability of sulfonylureas to ameliorate the diabetes of affected patients. CONCLUSIONS/INTERPRETATION: Our results provide the first demonstration that mutations such as L164P, which produce a severe reduction in ATP sensitivity, do not inevitably cause developmental delay or neurological problems. However, the neonatal diabetes of these patients is unresponsive to sulfonylurea therapy. Functional analysis of PNDM mutations can predict the sulfonylurea response
Synthesis and structural characterization of a mimetic membrane-anchored prion protein
During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP
Voltage-Dependent Gating in a “Voltage Sensor-Less” Ion Channel
An unusual mechanism of ion channel regulation generates voltage-dependent gating in the absence of a canonical voltage-sensing domain
Synergistic effects of treating the spinal cord and brain in CLN1 disease
Infantile neuronal ceroid lipofuscinosis (INCL, or CLN1 disease) is an inherited neurodegenerative storage disorder caused by a deficiency of the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). It was widely believed that the pathology associated with INCL was limited to the brain, but we have now found unexpectedly profound pathology in the human INCL spinal cord. Similar pathological changes also occur at every level of the spinal cord of PPT1-deficient (Ppt1(-/-)) mice before the onset of neuropathology in the brain. Various forebrain-directed gene therapy approaches have only had limited success in Ppt1(-/-) mice. Targeting the spinal cord via intrathecal administration of an adeno-associated virus (AAV) gene transfer vector significantly prevented pathology and produced significant improvements in life span and motor function in Ppt1(-/-) mice. Surprisingly, forebrain-directed gene therapy resulted in essentially no PPT1 activity in the spinal cord, and vice versa. This leads to a reciprocal pattern of histological correction in the respective tissues when comparing intracranial with intrathecal injections. However, the characteristic pathological features of INCL were almost completely absent in both the brain and spinal cord when intracranial and intrathecal injections of the same AAV vector were combined. Targeting both the brain and spinal cord also produced dramatic and synergistic improvements in motor function with an unprecedented increase in life span. These data show that spinal cord pathology significantly contributes to the clinical progression of INCL and can be effectively targeted therapeutically. This has important implications for the delivery of therapies in INCL, and potentially in other similar disorders.Peer reviewe
- …