291 research outputs found

    Photodissociation and the Morphology of HI in Galaxies

    Full text link
    Young massive stars produce Far-UV photons which dissociate the molecular gas on the surfaces of their parent molecular clouds. Of the many dissociation products which result from this ``back-reaction'', atomic hydrogen \HI is one of the easiest to observe through its radio 21-cm hyperfine line emission. In this paper I first review the physics of this process and describe a simplified model which has been developed to permit an approximate computation of the column density of photodissociated \HI which appears on the surfaces of molecular clouds. I then review several features of the \HI morphology of galaxies on a variety of length scales and describe how photodissociation might account for some of these observations. Finally, I discuss several consequences which follow if this view of the origin of HI in galaxies continues to be successful.Comment: 18 pages, 7 figures in 8 files, invited review paper for the conference "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note", South Africa, June 2004. Proceedings to be published by Kluwer, eds. D.L. Block, K.C. Freeman, I. Puerari, R. Groess, & E.K. Bloc

    Neutron Scattering and Its Application to Strongly Correlated Systems

    Full text link
    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an introduction to neutrons and neutron sources. The neutron scattering cross section is described and formulas are given for nuclear diffraction, phonon scattering, magnetic diffraction, and magnon scattering. As an experimental example, we describe measurements of antiferromagnetic order, spin dynamics, and their evolution in the La(2-x)Ba(x)CuO(4) family of high-temperature superconductors.Comment: 31 pages, chapter for "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancin

    Radioactivities in Population Studies: 26Al and 60Fe from OB Associations

    Full text link
    The observation of the interstellar 1.809 MeV decay-line of radioactive 26Al by the imaging gamma-ray telescope COMPTEL have let to the conclusion, that massive stars and their subsequent core-collapse supernovae are the dominant sources of the interstellar 26Al abundance. Massive stars are known to affect the surrounding interstellar medium by their energetic stellar winds and by the emission of ionising radiation. We present a population synthesis model allowing the correlated investigation of the gamma-ray emission characteristics with integrated matter, kinetic energy and extreme ultra-violet radiation emission of associations of massive stars. We study the time evolution of the various observables. In addition, we discuss systematic as well as statistical uncertainties affecting the model. Beside uncertainties in the input stellar physics such as stellar rotation, mass loss rates or internal mixing modifications due to a unknown binary component may lead to significant uncertainties.Comment: 10 pages, 7 figures, to appear in Proc. "Influence of Binaries on Stellar Population Studies", eds. Vanbeveren & Van Rensbergen, Brussels, Aug. 200

    A large age for the pulsar B1757-24 from an upper limit on its proper motion

    Get PDF
    The "characteristic age" of a pulsar usually is considered to approximate its true age, but this assumption has led to some puzzling results, including the fact that many pulsars with small characteristic ages have no associated supernova remnants. The pulsar B1757-24 is located just beyond the edge of a supernova remnant; the properties of the system indicate that the pulsar was born at the centre of the remnant, but that it has subsequently overtaken the expanding blast-wave. With a characteristic age of 16,000 yr, this implies an expected proper motion by the pulsar of 63-80 milliarcsec per year. Here we report observations of the nebula surrounding the pulsar which limit its proper motion to less than 25 mas/yr, implying a minimum age of 39,000 yr. A more detailed analysis argues for a true age as great as 170,000 yr, significantly larger than the characteristic age. From this result and other discrepancies associated with pulsars, we conclude that characteristic ages seriously underestimate the true ages of pulsars

    The microwave background temperature at the redshift of 2.33771

    Full text link
    The Cosmic Microwave Background radiation is a fundamental prediction of Hot Big Bang cosmology. The temperature of its black-body spectrum has been measured at the present time, TCMBR,0T_{\rm CMBR,0} = 2.726±\pm 0.010 K, and is predicted to have been higher in the past. At earlier time, the temperature can be measured, in principle, using the excitation of atomic fine structure levels by the radiation field. All previous measurements however give only upper limits as they assume that no other significant source of excitation is present. Here we report the detection of absorption from the first {\sl and} second fine-structure levels of neutral carbon atoms in an isolated remote cloud at a redshift of 2.33771. In addition, the unusual detection of molecular hydrogen in several rotational levels and the presence of ionized carbon in its excited fine structure level make the absorption system unique to constrain, directly from observation, the different excitation processes at play. It is shown for the first time that the cosmic radiation was warmer in the past. We find 6.0 < T_{\rm CMBR} < 14 K at z = 2.33771 when 9.1 K is expected in the Hot Big Bang cosmology.Comment: 20 pages, 5 figures, accepted for publication in Nature, Press embargo until 1900 hrs London time (GMT) on 20 Dec 200

    Spectra of supernovae in the nebular phase

    Full text link
    When supernovae enter the nebular phase after a few months, they reveal spectral fingerprints of their deep interiors, glowing by radioactivity produced in the explosion. We are given a unique opportunity to see what an exploded star looks like inside. The line profiles and luminosities encode information about physical conditions, explosive and hydrostatic nucleosynthesis, and ejecta morphology, which link to the progenitor properties and the explosion mechanism. Here, the fundamental properties of spectral formation of supernovae in the nebular phase are reviewed. The formalism between ejecta morphology and line profile shapes is derived, including effects of scattering and absorption. Line luminosity expressions are derived in various physical limits, with examples of applications from the literature. The physical processes at work in the supernova ejecta, including gamma-ray deposition, non-thermal electron degradation, ionization and excitation, and radiative transfer are described and linked to the computation and application of advanced spectral models. Some of the results derived so far from nebular-phase supernova analysis are discussed.Comment: Book chapter for 'Handbook of Supernovae,' edited by Alsabti and Murdin, Springer. 51 pages, 14 figure

    ACVIM consensus statement on the diagnosis of immune-mediated hemolytic anemia in dogs and cats

    Get PDF
    Immune-mediated hemolytic anemia (IMHA) is an important cause of morbidity and mortality in dogs. IMHA also occurs in cats, although less commonly. IMHA is considered secondary when it can be attributed to an underlying disease, and as primary (idiopathic) if no cause is found. Eliminating diseases that cause IMHA may attenuate or stop immune-mediated erythrocyte destruction, and adverse consequences of long-term immunosuppressive treatment can be avoided. Infections, cancer, drugs, vaccines, and inflammatory processes may be underlying causes of IMHA. Evidence for these comorbidities has not been systematically evaluated, rendering evidence-based decisions difficult. We identified and extracted data from studies published in the veterinary literature and developed a novel tool for evaluation of evidence quality, using it to assess study design, diagnostic criteria for IMHA, comorbidities, and causality. Succinct evidence summary statements were written, along with screening recommendations. Statements were refined by conducting 3 iterations of Delphi review with panel and task force members. Commentary was solicited from several professional bodies to maximize clinical applicability before the recommendations were submitted. The resulting document is intended to provide clinical guidelines for diagnosis of, and underlying disease screening for, IMHA in dogs and cats. These should be implemented with consideration of animal, owner, and geographical factors

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package
    corecore