Young massive stars produce Far-UV photons which dissociate the molecular gas
on the surfaces of their parent molecular clouds. Of the many dissociation
products which result from this ``back-reaction'', atomic hydrogen \HI is one
of the easiest to observe through its radio 21-cm hyperfine line emission. In
this paper I first review the physics of this process and describe a simplified
model which has been developed to permit an approximate computation of the
column density of photodissociated \HI which appears on the surfaces of
molecular clouds. I then review several features of the \HI morphology of
galaxies on a variety of length scales and describe how photodissociation might
account for some of these observations. Finally, I discuss several consequences
which follow if this view of the origin of HI in galaxies continues to be
successful.Comment: 18 pages, 7 figures in 8 files, invited review paper for the
conference "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning
Fork Strikes a New Note", South Africa, June 2004. Proceedings to be
published by Kluwer, eds. D.L. Block, K.C. Freeman, I. Puerari, R. Groess, &
E.K. Bloc