941 research outputs found

    Unconfined Specimens

    Get PDF
    ABSTRACT: Effective diffusion coefficients, D*, of chloride and zinc diffusing in saturated, unconfined specimens of a compacted sandclay mixture are measured for three specimen lengths, L (2.91, 5.83, and 11.60 cm) and three test durations (7, 14, and 21 days). For a specimen length of 2.91 cm, both the chloride and zinc D* values tend to decrease with increasing test duration, possibly due to the measurement of concentration-dependent D* values. For a 14-day test duration, no consistent trend in D* with specimen length is observed, but the overall effect of specimen length on D* is minor relative to the range of measured D* values. A 21-day test duration provides the best correlation between the D* values based on reservoir concentrations, DiScs, and the D* values based on soil concentrations, D~oil, for chloride for a given test regardless of the specimen length. The effect of test duration on the correlation between D~cs and D~oit for zinc is minor based on the relatively narrow range of measured zinc D* values. The observed effects of specimen length on the correlation between D~¢s and D~oil for a given test are consistent with the more uniform final porosity distributions in the shorter specimens and the contrasting effects of the non-linear distributions in porosity and dry density that become less significant as the specimen length increases. KEYWORDS: adsorption, attapulgite clay, batch equilibrium, chloride diffusion, contaminant transport, diffusion testing, Freundlich isotherm, sand-clay mixture, swelling, zinc diffusion Over the past -30 years, diffusion testing has been performed in several different disciplines (e.g., soil science, geology, oceanography, geotechnical engineering) for several different purposes, including diffusion of nutrients to plant roots (Olsen and Kemper 1968), characterization of pore water in geologic deposits Several different types of diffusion testing procedures can be used, test durations have ranged from a few hours to several months, and the specimen volumes have ranged from as small as 10 cm 3 to more than 944 cm 3 (Shacketford 1991). Practical limitations to some, if not all, of the different test methods undoubtedly exist, and variability in test duration and specimen size may have an effect on determination of the measured diffusion coefficients. As a result, an evaluation of the factors potentially affecting the measurement of effective diffusion coefficients is needed. Such an evaluation is particularly of interest to geotechnical engineers associated with the design and evaluation of waste containment barriers because of the increasing importance placed on contaminant transport, in general, and diffusive transport, in particular, in such applications. The primary objective of this study is to evaluate the potential influence of test duration and specimen length on the diffusion of chloride and zinc in compacted, unconfined specimens of a sandclay mixture. The evaluation is based on the single reservoir, decreasing source concentration method that has been used extensively in the measurement of effective diffusion coefficients associated with waste disposal applications Materials and Methods Soil The soil used in this study is a mixture of 75% sand and 25% attapulgite clay (dry weight basis). Physical and chemical properties of the sand and attapulgite clay are provided i

    Selection for genetic markers in beef cattle reveals complex associations of thyroglobulin and casein1-S1 with carcass and meat traits

    Get PDF
    Genetic markers in casein (CSN1S1) and thyroglobulin (TG) genes have previously been associated with fat distribution in cattle. Determining the nature of these genetic associations (additive, recessive, or dominant) has been diffi cult, because both markers have small minor allele frequencies in most beef cattle populations. This results in few animals homozygous for the minor alleles. Selection to increase the frequencies of the minor alleles for 2 SNP markers in these genes was undertaken in a composite population. The objective was to obtain better estimates of genetic effects associated with these markers and determine if there were epistatic interactions. Selection increased the frequencies of minor alleles for both SNP from0.10). Additive, dominance, and epistatic SNP association effects were estimated from genotypic effects for adjusted fat thickness and predicted meat tenderness. Adjusted fat thickness showed a dominance association with TG SNP (P \u3c 0.06) and an epistatic additive CSN1S1 Ă— additive TG association (P \u3c 0.03). For predicted meat tenderness, heterozygous TG meat was more tender than meat from either homozygote (P \u3c 0.002). Dominance and epistatic associations can result in different SNP allele substitution effects in populations where SNP have the same linkage disequilibrium with causal mutations but have different frequencies. Although the complex associations estimated in this study would contribute little to within-population selection response, they could be important for marker-assisted management or reciprocal selection schemes

    Conductivity of dielectric and thermal atom-wall interaction

    Full text link
    We compare the experimental data of the first measurement of a temperature dependence of the Casimir-Polder force by Obrecht et al. [Phys. Rev. Lett. {\bf 98}, 063201 (2007)] with the theory taking into account small, but physically real, static conductivity of the dielectric substrate. The theory is found to be inconsistent with the data. The conclusion is drawn that the conductivity of dielectric materials should not be included in the model of the dielectric response in the Lifshitz theory. This conclusion obtained from the long separation measurement is consistent with related but different results obtained for semiconductors and metals at short separations.Comment: 4 pages, 2 figures; page size is correcte

    Skeletal Recovery Following Long-Duration Spaceflight Missions as Determined by Preflight and Postflight DXA Scans of 45 Crew Members

    Get PDF
    Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months

    Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data

    Get PDF
    Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a “one size fits all” approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5–99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef

    Recovery of Spaceflight-induced Bone Loss: Bone Mineral Density after Long-Duration Missions as Fitted with an Exponential Function

    Get PDF
    The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) before and after flight on astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts ( by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members -- a small number of whom flew on more than one mission -- were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: i) BMD change on landing day (day 0) and ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2-9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months

    Predicting aged pork quality using a portable Raman device

    Get PDF
    The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations

    A multi-proxy approach to exploring Homo sapiens’ arrival, environments and adaptations in Southeast Asia

    Get PDF
    The capability of Pleistocene hominins to successfully adapt to different types of tropical forested environments has long been debated. In order to investigate environmental changes in Southeast Asia during a critical period for the turnover of hominin species, we analysed palaeoenvironmental proxies from five late Middle to Late Pleistocene faunas. Human teeth discoveries have been reported at Duoi U’Oi, Vietnam (70–60 ka) and Nam Lot, Laos (86–72 ka). However, the use of palaeoproteomics allowed us to discard the latter, and, to date, no human remains older than ~ 70 ka are documented in the area. Our findings indicate that tropical rainforests were highly sensitive to climatic changes over that period, with significant fluctuations of the canopy forests. Locally, large-bodied faunas were resilient to these fluctuations until the cooling period of the Marine Isotope Stage 4 (MIS 4; 74–59 ka) that transformed the overall biotope. Then, under strong selective pressures, populations with new phenotypic characteristics emerged while some other species disappeared. We argue that this climate-driven shift offered new foraging opportunities for hominins in a novel rainforest environment and was most likely a key factor in the settlement and dispersal of our species during MIS 4 in SE Asia
    • …
    corecore