3,264 research outputs found
The J-triplet Cooper pairing with magnetic dipolar interactions
Recently, cold atomic Fermi gases with the large magnetic dipolar interaction
have been laser cooled down to quantum degeneracy. Different from
electric-dipoles which are classic vectors, atomic magnetic dipoles are
quantum-mechanical matrix operators proportional to the hyperfine-spin of
atoms, thus provide rich opportunities to investigate exotic many-body physics.
Furthermore, unlike anisotropic electric dipolar gases, unpolarized magnetic
dipolar systems are isotropic under simultaneous spin-orbit rotation. These
features give rise to a robust mechanism for a novel pairing symmetry: orbital
p-wave (L=1) spin triplet (S=1) pairing with total angular momentum of the
Cooper pair J=1. This pairing is markedly different from both the He-B
phase in which J=0 and the He- phase in which is not conserved. It
is also different from the p-wave pairing in the single-component electric
dipolar systems in which the spin degree of freedom is frozen
Identification of Serum MicroRNAs as Novel Non-Invasive Biomarkers for Early Detection of Gastric Cancer
BACKGROUND: To investigate the potential of serum miRNAs as biomarkers for early detection of gastric cancer (GC), a population-based study was conducted in Linqu, a high-risk area of GC in China. METHODOLOGY/PRINCIPAL FINDINGS: All subjects were selected from two large cohort studies. Differential miRNAs were identified in serum pools of GC and control using TaqMan low density array, and validated in individual from 82 pairs of GC and control, and 46 pairs of dysplasia and control by real-time quantitative reverse transcription-polymerase chain reaction. The temporal trends of identified serum miRNA expression were further explored in a retrospective study on 58 GC patients who had at least one pre-GC diagnosis serum sample based on the long-term follow-up population. The miRNA profiling results demonstrated that 16 miRNAs were markedly upregulated in GC patients compared to controls. Further validation identified a panel of three serum miRNAs (miR-221, miR-744, and miR-376c) as potential biomarkers for GC detection, and receiver operating characteristic (ROC) curve-based risk assessment analysis revealed that this panel could distinguish GCs from controls with 82.4% sensitivity and 58.8% specificity. MiR-221 and miR-376c demonstrated significantly positive correlation with poor differentiation of GC, and miR-221 displayed higher level in dysplasia than in control. Furthermore, the retrospective study revealed an increasing trend of these three miRNA levels during GC development (P for trend<0.05), and this panel could classify serum samples collected up to 5 years ahead of clinical GC diagnosis with 79.3% overall accuracy. CONCLUSIONS/SIGNIFICANCE: These data suggest that serum miR-221, miR-376c and miR-744 have strong potential as novel non-invasive biomarkers for early detection of GC
Frequency shift and mode coupling in the nonlinear dynamics of a Bose condensed gas
We investigate the behavior of large amplitude oscillations of a trapped
Bose-condensed gas of alkali atoms at zero temperature, by solving the
equations of hydrodynamics for collective modes. Due to the atom-atom
interaction, the equations of motion are nonlinear and give rise to significant
frequency shift and mode coupling. We provide analytic expressions for the
frequency shift, pointing out the crucial role played by the anisotropy of the
confining potential. For special values of the anisotropy parameter the mode
coupling is particularly strong and the frequency shift becomes large,
revealing a peculiar behavior of the Bose-condensed gas. Consequences on the
theory of collapse and revival of collective excitations are also discussed.Comment: 10 pages, RevTeX, 9 figures, more info at
http://www-phys.science.unitn.it/bec/BEC.htm
A kinematic analysis of a haptic handheld stylus in a virtual environment: a study in healthy subjects
<p>Abstract</p> <p>Background</p> <p>Virtual Reality provides new options for conducting motor assessment and training within computer-generated 3 dimensional environments. To date very little has been reported about normal performance in virtual environments. The objective of this study was to evaluate the test-retest reliability of a clinical procedure measuring trajectories with a haptic handheld stylus in a virtual environment and to establish normative data in healthy subjects using this haptic device.</p> <p>Methods</p> <p>Fifty-eight normal subjects; aged from 20 to 69, performed 3 dimensional hand movements in a virtual environment using a haptic device on three occasions within one week. Test-retest stability and standardized normative data were obtained for all subjects.</p> <p>Results</p> <p>No difference was found between test and retest. The limits of agreement revealed that changes in an individual's performance could not be detected. There was a training effect between the first test occasion and the third test occasion. Normative data are presented.</p> <p>Conclusion</p> <p>A new test was developed for recording the kinematics of the handheld haptic stylus in a virtual environment. The normative data will be used for purposes of comparison in future assessments, such as before and after training of persons with neurological deficits.</p
RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
How to find simple and accurate rules for viral protease cleavage specificities
<p>Abstract</p> <p>Background</p> <p>Proteases of human pathogens are becoming increasingly important drug targets, hence it is necessary to understand their substrate specificity and to interpret this knowledge in practically useful ways. New methods are being developed that produce large amounts of cleavage information for individual proteases and some have been applied to extract cleavage rules from data. However, the hitherto proposed methods for extracting rules have been neither easy to understand nor very accurate. To be practically useful, cleavage rules should be accurate, compact, and expressed in an easily understandable way.</p> <p>Results</p> <p>A new method is presented for producing cleavage rules for viral proteases with seemingly complex cleavage profiles. The method is based on orthogonal search-based rule extraction (OSRE) combined with spectral clustering. It is demonstrated on substrate data sets for human immunodeficiency virus type 1 (HIV-1) protease and hepatitis C (HCV) NS3/4A protease, showing excellent prediction performance for both HIV-1 cleavage and HCV NS3/4A cleavage, agreeing with observed HCV genotype differences. New cleavage rules (consensus sequences) are suggested for HIV-1 and HCV NS3/4A cleavages. The practical usability of the method is also demonstrated by using it to predict the location of an internal cleavage site in the HCV NS3 protease and to correct the location of a previously reported internal cleavage site in the HCV NS3 protease. The method is fast to converge and yields accurate rules, on par with previous results for HIV-1 protease and better than previous state-of-the-art for HCV NS3/4A protease. Moreover, the rules are fewer and simpler than previously obtained with rule extraction methods.</p> <p>Conclusion</p> <p>A rule extraction methodology by searching for multivariate low-order predicates yields results that significantly outperform existing rule bases on out-of-sample data, but are more transparent to expert users. The approach yields rules that are easy to use and useful for interpreting experimental data.</p
Effect of Wood-derived Charcoal Content on Properties of Wood Plastic Composites
The effect of wood-derived charcoal flour on the water resistance and mechanical properties of wood plastic composite (WPC) panels was investigated. The hot press molded WPC panels were produced from polypropylene (37 wt%) with maleic anhydride-grafted polypropylene (MAPP, 3 wt%) and different mixtures of wood flour and charcoal flour. The amount of charcoal flour was gradually increased up to 60 wt%. The thickness swelling and water absorption of WPC panels considerably decreased with increasing charcoal flour content. The internal bond strength and bending properties of the WPC panels significantly improved with increasing charcoal flour content. This was mainly attributed to the high amount of pores and gaps in the charcoal flour. Melted polypropylene could get into the pores and gaps during the hot press molding, which lead to a better interfacial adhesion between polymer matrix and wood filler. The results showed that the charcoal flour could be partially substituted for the wood flour in the production of WPC panels having higher dimensional stability and internal bond strength
Study on Resistance Switching Properties of Na0.5Bi0.5TiO3Thin Films Using Impedance Spectroscopy
The Na0.5Bi0.5TiO3(NBT) thin films sandwiched between Au electrodes and fluorine-doped tin oxide (FTO) conducting glass were deposited using a sol–gel method. Based on electrochemical workstation measurements, reproducible resistance switching characteristics and negative differential resistances were obtained at room temperature. A local impedance spectroscopy measurement of Au/NBT was performed to reveal the interface-related electrical characteristics. The DC-bias-dependent impedance spectra suggested the occurrence of charge and mass transfer at the interface of the Au/NBT/FTO device. It was proposed that the first and the second ionization of oxygen vacancies are responsible for the conduction in the low- and high-resistance states, respectively. The experimental results showed high potential for nonvolatile memory applications in NBT thin films
Effects of CuO additives and sol-gel technique on NiNb2O6 dielectric ceramics for LTCC application
The effects of CuO additives and sol–gel method synthesis on the sintering behavior, microstructure and the microwave dielectric properties of NiNb2O6 ceramics were investigated systematically. The NiNb2O6 ceramics were synthesized with traditional solid state method and sol–gel method, and the CuO additives were used in the solid state method for comparison. The sintering temperature of NiNb2O6 ceramics with the highest densification can be effectively reduced from about 1275 °C to 1050 and 1100 °C respectively by using CuO additions and sol–gel technique. To study their applicability in low temperature co-fired ceramic technology, dielectric properties have been characterized. The dielectric properties exhibited a significant dependence on the sintering condition, composition and crystal structure of the ceramics. In particular, the 2.5 wt% CuO-doped NiNb2O6 ceramics sintered at 1050 °C have excellent microwave dielectric properties: εr = 21.45, Q × f = 23,531 GHz, τf = −27.9 ppm/°C. While the NiNb2O6 ceramics prepared by sol–gel method obtain microwave dielectric properties as: εr = 19.16, Q × f = 11,149 GHz, τf = −27.3 ppm/°C after sintered at 1100 °C for 2 h
Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices
Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions
- …