798 research outputs found

    Digital Signal Processing Application in Nuclear Spectroscopy

    Get PDF
    Digital signal processing algorithms for nuclear particle spectroscopy are described along with a digital pile-up elimination method applicable to equidistantly sampled detector signals pre-processed by a charge-sensitive preamplifier. The signal processing algorithms provided as recursive one- or multi-step procedures which can be easily programmed using modern computer programming languages. The influence of the number of bits of the sampling analogue-to-digital converter to the final signal-to-noise ratio of the spectrometer considered. Algorithms for a digital shaping-filter amplifier, for a digital pile-up elimination scheme and for ballistic deficit correction were investigated using a high purity germanium detector. The pile-up elimination method was originally developed for fission fragment spectroscopy using a Frisch-grid back-to-back double ionisation chamber and was mainly intended for pile-up elimination in case of high alpha-radioactivity of the fissile target. The developed pile-up elimination method affects only the electronic noise generated by the preamplifier. Therefore, the influence of the pile-up elimination scheme on the final resolution of the spectrometer investigated in terms of the distance between piled-up pulses. The efficiency of developed algorithms compared with other signal processing schemes published in literature. Keywords: x- and gamma-ray spectroscopy, computer data analysis, ionization chambers, interpolation; curve fitting, numerical differentiation and integration, integral and integrodifferential equations.JRC.DDG.D.5-Neutron physic

    Magnetically-driven electronic phase separation in the semimetallic ferromagnet EuB6_6

    Full text link
    From measurements of fluctuation spectroscopy and weak nonlinear transport on the semimetallic ferromagnet EuB6_6 we find direct evidence for magnetically-driven electronic phase separation consistent with the picture of percolation of magnetic polarons (MP), which form highly conducting magnetically-ordered clusters in a paramagnetic and 'poorly conducting' background. These different parts of the conducting network are probed separately by the noise spectroscopy/nonlinear transport and the conventional linear resistivity. We suggest a comprehensive and 'universal' scenario for the MP percolation, which occurs at a critical magnetization either induced by ferromagnetic order at zero field or externally applied magnetic fields in the paramagentic region

    Boosting Portland cement-free composite performance via alkali-activation and reinforcement with pre-treated functionalised wheat straw

    Get PDF
    Utilising wheat straw reinforced OPC-free composites in the construction industry requires efficient, eco-friendly pre-treatment coupled with surface functionalisation methods to turn it into a high-performance material. Herein, alkali-activated material (AAM) was used as an OPC-free matrix, while eco-friendly hybrid pre-treatment and surface functionalisations were applied to mitigate the surface quality deficiencies of wheat straw and improve its compatibility with low-carbon binders. Wheat straw particles were subjected to a mild physical pre-treatment (hot-water followed by steam) and surface functionalisation using attapulgite nanoclay and graphene nanoplatelets to improve their capacity as an effective reinforcing material in AAM. Comprehensive characterisation verified successful pre-treatment and surface functionalisation, which led to the improved interfacial bond between wheat straw and AAM. The best results were obtained for the AAM samples reinforced with pre-treated straw that was functionalised with attapulgite nanoclay (i.e., H+S-AT), in which the volume of permeable voids decreased by 18%, while compressive and flexural strength at 90 d increased by 41% and 27%, respectively, compared to the control sample. However, the effect on the thermal properties of the resulted composites was not significant.This work was funded as part of the HP-CSB project, which has received funding from the Engineering and Physical Sciences Research Council with the following reference: EP/S026487/1. The authors acknowledge Nanesa S.r.l for graphene material supply and Dr. C. Lehmann from TU Berlin for SEM assessments

    Heterogeneity in multistage carcinogenesis and mixture modeling

    Get PDF
    Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed into cancer cells via a series of mutations. In this article, we consider extensions of the multistage carcinogenesis model by mixture modeling. This approach allows us to describe population heterogeneity in a biologically meaningful way. We focus on finite mixture models, for which we prove identifiability. These models are applied to human lung cancer data from several birth cohorts. Maximum likelihood estimation does not perform well in this application due to the heavy censoring in our data. We thus use analytic graduation instead. Very good fits are achieved for models that combine a small high risk group with a large group that is quasi immune

    Controlling a magnetic Feshbach resonance with laser light

    Full text link
    The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances are a tool widely used for this purpose, but future experiments would benefit from additional flexibility such as spatial modulation of the interaction strength on short length scales. Optical Feshbach resonances offer this possibility in principle, but suffer from fast particle loss due to light-induced inelastic collisions. Here we show that light near-resonant with a molecular bound-to-bound transition can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes it possible to tune the interaction strength with laser light and at the same time induce considerably less loss than an optical Feshbach resonance would do

    Explicit BCJ Numerators from Pure Spinors

    Get PDF
    We derive local kinematic numerators for gauge theory tree amplitudes which manifestly satisfy Jacobi identities analogous to color factors. They naturally emerge from the low energy limit of superstring amplitudes computed with the pure spinor formalism. The manifestation of the color--kinematics duality is a consequence of the superstring computation involving no more than (n-2)! kinematic factors for the full color dressed n-point amplitude. The bosonic part of these results describe gluon scattering independent on the number of supersymmetries and captures any N^kMHV helicity configuration after dimensional reduction to D=4 dimensions.Comment: 32 pages, harvma

    A Balanced Diet Is Necessary for Proper Entrainment Signals of the Mouse Liver Clock

    Get PDF
    BACKGROUND:The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. PRINCIPAL FINDING:To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3-4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6-0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. CONCLUSIONS:Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on-board meals served to air travelers and shift workers to reduce jet lag-like symptoms

    Robust Food Anticipatory Activity in BMAL1-Deficient Mice

    Get PDF
    Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Even though nocturnal rodents prefer to forage at night, daytime food anticipatory activity (FAA) is observed prior to short meals presented at a scheduled time of day. Under this restricted feeding regimen, rodents exhibit two distinct bouts of activity, a nocturnal activity rhythm that is entrained to the light-dark cycle and controlled by the master clock in the suprachiasmatic nuclei (SCN) and a daytime bout of activity that is phase-locked to mealtime. FAA also occurs during food deprivation, suggesting that a food-entrainable oscillator (FEO) keeps time in the absence of scheduled feeding. Previous studies have demonstrated that the FEO is anatomically distinct from the SCN and that FAA is observed in mice lacking some circadian genes essential for timekeeping in the SCN. In the current study, we optimized the conditions for examining FAA during restricted feeding and food deprivation in mice lacking functional BMAL1, which is critical for circadian rhythm generation in the SCN. We found that BMAL1-deficient mice displayed FAA during restricted feeding in 12hr light:12hr dark (12L:12D) and 18L:6D lighting cycles, but distinct activity during food deprivation was observed only in 18L:6D. While BMAL1-deficient mice also exhibited robust FAA during restricted feeding in constant darkness, mice were hyperactive during food deprivation so it was not clear that FAA consistently occurred at the time of previously scheduled food availability. Taken together, our findings suggest that optimization of experimental conditions such as photoperiod may be necessary to visualize FAA in genetically modified mice. Furthermore, the expression of FAA may be possible without a circadian oscillator that depends on BMAL1

    Deciphering the genome structure and paleohistory of _Theobroma cacao_

    Get PDF
    We sequenced and assembled the genome of _Theobroma cacao_, an economically important tropical fruit tree crop that is the source of chocolate. The assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of them anchored on the 10 _T. cacao_ chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example flavonoid-related genes. It also provides a major source of candidate genes for _T. cacao_ disease resistance and quality improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten _T. cacao_ chromosomes were shaped from an ancestor through eleven chromosome fusions. The _T. cacao_ genome can be considered as a simple living relic of higher plant evolution
    • …
    corecore