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Abstract

We derive local kinematic numerators for gauge theory tree amplitudes which mani-

festly satisfy Jacobi identities analogous to color factors. They naturally emerge from the

low energy limit of superstring amplitudes computed with the pure spinor formalism. The

manifestation of the color–kinematics duality is a consequence of the superstring com-

putation involving no more than (n − 2)! kinematic factors for the full color dressed n

point amplitude. The bosonic part of these results describe gluon scattering independent

on the number of supersymmetries and captures any NkMHV helicity configuration after

dimensional reduction to D = 4 dimensions.

http://arxiv.org/abs/1104.5224v1


1. Introduction

Bern, Carrasco and Johansson (BCJ) have introduced a parametrization of gauge

theory scattering amplitudes such that all the kinematic factors obey an equivalent of the

Jacobi identity for color factors [1]. This duality between color- and kinematic degrees

of freedom is an excellent example for hidden simplicity and non-obvious harmony in

scattering amplitudes. It plays a crucial role for taming the non-planar sector of SYM and

for understanding gravity as the double copy of gauge theories [2].

The BCJ organization scheme represents gauge theory amplitudes in terms of diagrams

with cubic vertices only (in short: cubic diagrams). This amounts to writing the color-

dressed n point amplitude as follows:

An =
∑

i

cini
∏

αi
sαi

(1.1)

The ci denote color factors made of n−2 structure constants fabc of the gauge group, and

their dual numerators ni are constructed in this work. Each (ni, ci) pair multiplies n − 3

propagators s−1
αi

of a cubic n point tree diagram.

The contribution of four point vertices in SYM fields to (1.1) certainly contains less

propagators and must be absorbed into the ni by multiplying with some
sαi

sαi

for compatibil-

ity with the pole structure. These contact terms introduce ambiguities in the parametriza-

tion above. At n ≥ 5 points, a generic choice of assignment spoils the dual Jacobi identities

for the ni. Hence, contact terms have always been an obstacle in constructing color-dual

BCJ numerators directly from the gauge theory. There exist Kawai–Lewellen–Tye (KLT)

inspired expressions for ni in terms of color ordered gauge theory amplitudes [3,4] which

do not exhibit manifest locality.

The approach used in this paper bypasses the contact term ambiguity because the new

BRST cohomology organization of the string amplitude discussed in [5] naturally absorbs

these contact terms. In [6,7] the contact term ambiguity was shown to arise from the

double pole in the OPE of two integrated vertices in the field-theory limit of the string

amplitude. However, terms of this form are uniquely packaged inside BRST-covariant

building blocks when the result of the tree-level string amplitude computed with the pure

spinor formalism is recast into a form which manifests its BRST properties [5].
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The ni constructed this way can therefore be recycled from planar N = 4 SYM to

the non-planar sector and used for N = 8 supergravity by means of the double copy

construction, cf. [8] and references therein. Ultimately, they are helpful for studying the

ultraviolet properties of gravity theories at higher loops.

Due to the pure spinor methods, the BCJ numerators are written in terms of N = 1

SYM superfields in D = 10 dimensions. It is straightforward to dimensionally reduce

the superfield components to D = 4, and the bosonic parts describe gluon scattering

independently on the existence of supersymmetries. The computation does not single out

any particular helicity configuration and treats all NkMHV amplitudes on the same footing.

2. Basic facts of the Pure Spinor Formalism

The explicit construction of BCJ numerators will be carried out in pure spinor su-

perspace and we show the fine structure of the (n − 2)! basic kinematics provided by the

stringy computation of n-point amplitudes. For this purpose, this section briefly presents

the tree-level framework of the pure spinor formalism [9]1. In particular, we will make use

of the pure spinor BRST cohomology building blocks which are more carefully explained

in [5].

The pure spinor formalism is a manifestly super-Poincare covariant approach to the

superstring. Massless states of the open string sector are described by the ten-dimensional

N = 1 super Yang-Mills superfields [Aα, Am,W
α,Fmn] of [12] which encompass the gluon-

polarization vector em and the gluino wave function χα and can be expanded in the

Grassmann odd superspace coordinates θα.

They satisfy the following linearized equations of motion,

DαAβ +DβAα = γmαβAm, DαAm = (γmW )α + kmAα,

DαFmn = 2k[m(γn]W )α, DαW
β =

1

4
(γmn) β

α Fmn (2.1)

which imply the on-shell constraints kme
m = kmγ

m
αβχ

β = 0 in components.

The scattering amplitudes of these massless states are obtained by computing the

correlation function

An = 〈V 1(0)V (n−1)(1)V n(∞)

∫

dz2U
2(z2). . .

∫

dz(n−2)U
(n−2)(z(n−2))〉, (2.2)

1 For reviews of the pure spinor formalism, see [10,11].
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where V i and U i are vertex operators writen in terms of the SYM superfields

V i = λαAi
α(x, θ), U i = ∂θαAi

α +ΠmAi
m + dαW

α
i +

1

2
F i

mnN
mn. (2.3)

The bosonic ghost field λα(z) is a pure spinor satisfying λαγmαβλ
β = 0 and

Πm(z) = ∂Xm +
1

2
(θγm∂θ), dα(z) = ∂α − 1

2
(γmθ)α∂Xm − 1

8
(γmθ)α(θγm∂θ) (2.4)

are, respectively, the supersymmetric momentum and Green-Schwarz constraint. The

Lorentz currents for the pure spinor field are Nmn(z) = 1
2
(λγmnw), where wα(z) is the

conjugate momentum of λα(z) [9]. Their OPE’s are easily computed [10,13].

The pure spinor BRST charge is defined by [9]

Q =

∮

λα(z)dα(z) (2.5)

and satisfies Q2 = 0. It can be shown that imposing QV = 0 puts all superfields on-shell,

which also implies that the BRST variation of the integrated vertex U(z) can be written

as QU = ∂V [10] (see also [14]).

After using the OPE’s to integrate out the conformal-weight one variables from the

correlator (2.2), one is left with an expression containing only zero-modes of the form

An = 〈λαλβλγf i1...in
αβγ (θ, α′)〉. (2.6)

In (2.6), f i1...in
αβγ (θ, α′) is both a composite superfield in the labels [i1, . . .in] of the exter-

nal states and a function of the string scale α′ satisfying λαλβλγλδDδf
i1...in
αβγ (θ, α′) = 0

due t BRST invariance. Its specific form in terms of the super Yang-Mills superfields

[Ai
α, A

i
m,W

α
i ,F i

mn] follows from OPE contractions while its functional dependence on α′

is determined by the momentum expansion of n-point Gaussian hypergeometric functions

[15] and multiple Gaussian hypergeometric functions [16,17]. The zero-mode integration

is denoted by the pure spinor bracket 〈. . .〉 [9]. It selects from the θ−expansion [18,19] of

the enclosed superfields the unique element in the cohomology of the pure spinor BRST

operator at ghost-number three, and its tree-level normalization can be chosen as

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1. (2.7)

Although (2.7) involves only five θ’s it can be shown to be supersymmetric [9]. Fur-

thermore, given the fact that there is only one scalar in the decomposition of λ3θ5, any

〈λαλβλγfαβγ(θ)〉 can be determined using symmetry arguments alone. This zero-mode

integration has been automated in a FORM [20] program [21] and therefore the component

expansions of any supersymmetric amplitude computed with the pure spinor formalism

are readily obtained. However, it is much more convenient to study the properties of the

amplitudes directly in the superspace expressions, where the BRST cohomology properties

of the pure spinor superspace allow several simplications to be carried out [22,23].
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2.1. BRST building blocks

In [5], the cohomology nature of pure spinor superspace has been exploited to define

natural objects Ti, Tij , Tijk, Tijkl, . . . which transform covariantly under the BRST charge

of (2.5). These so-called BRST building blocks Tijk... are constructed from the OPE’s

among the vertex operators Vi(zi)Uj(zj)Uk(zk). . . and are defined in such a way as to not

contain any BRST-exact terms [5]. They are ultimately written in terms of super Yang-

Mills superfields and therefore their θ-expansions are also known; for example the building

block with one label is given by Ti ≡ Vi where Vi is the vertex operator of (2.3). The next

building block Tij is an antisymmetric combination

Tij =
1

2
(Lji − Lij) , (2.8)

of the OPE residue Lji = −Ai
m(λγmW j) − V i(ki · Aj) of Vi(zi)Uj(zj). In [5], all build-

ing blocks up to and including Tijklm have been explicitly expressed in terms of SYM

superfields. As already mentioned, they transform covariantly under the BRST charge [5],

QT12 = s12V1V2, QT123 = (s13 + s23)T12V3 + s12(V1T23 + T13V2)

QT12...n =

n
∑

j=2

∑

α∈P (βj)

(s1j + s2j + . . .+ sj−1,j)T12...j−1,{α} Tj,{βj\α},
(2.9)

where βj = {j + 1, . . ., n} and P (βj) is the power set of βj . The sij = ki · kj denote

standard Mandelstam variables.

Furthermore, the BRST building blocks Ti1i2...ip have several symmetry properties

which leave (p− 1)! independent permutations at rank p and match the symmetries of the

cubic diagrams they represent, e.g.

0 = T12 + T21 = T123 + T213 = T123 + T231 + T312. (2.10)

The rank p object Ti1i2...ip inherits all symmetries of its lower rank relative Ti1i2...ip−1
in

the first p− 1 labels. It is therefore sufficient to give the novel relation at each rank which

involves all the p indices2,

p = 2n+ 1 : T12...n+1[n+2[...[2n−1[2n,2n+1]]...]] − 2T2n+1...n+2[n+1[...[3[21]]...]] = 0

p = 2n : T12...n[n+1[...[2n−2[2n−1,2n]]...]] + T2n...n+1[n[...[3[21]]...]] = 0,
(2.11)

2 The notation [i[jk]] using nested square brackets means consecutive antisymmetrization of

pairs of labels starting from the outmost one, e.g. T[i[jk]] = 1/2(Ti[jk]−T[jk]i) = 1/4(Tijk −Tikj −

Tjki + Tkji)
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A4(1, 2, 3, 4) =
2

1

s
3

4

+

2

1

u

3

4

A4(1, 3, 2, 4) =

2

1

t

3

4

−
2

1

u

3

4

A5(1, 2, 3, 4, 5) =

2

1
s12

3

s45

4

5

+ cyclic(12345)

Fig. 1 The four- and five-point amplitudes in terms of cubic graphs.

The other five-point diagrams for the Kleiss-Kuijf basis can be obtained

by relabeling.

e.g. T1234 + T1243 + T4321 + T4312 = 0 at rank four.

Making use of these building blocks we have obtained the general form of the tree-level

n point correlator of (2.2) in [5,24] (see equation (3.5) below). As will now be discussed,

the field-theory limit of the superstring amplitude can be used to find supersymmetric and

local n-point BCJ-satisfying kinematic numerators [1] in a straightforward manner.

3. String inspired BCJ numerators in superspace

According to the hypothesis of BCJ, the color dressed n point tree amplitude in gauge

theories can be parametrized as

An =
∑

i

cini
∏

αi
sαi

(3.1)

such that the kinematic factors ni satisfy Jacobi-like relations in one-to-one correspondence

with the group-theoretic Jacobi identities for the color factors ci,

ci ± cj ± ck = 0 ⇒ ni ± nj ± nk = 0. (3.2)

The relative signs depend on the choice of signs when defining the color factors. The i

sum in (3.1) runs over the (2n − 5)!! cubic diagrams or pole channels specified by n − 3

propagators s−1
αi

.

In this section, we will derive the kinematic numerators ni in this organization scheme

from superstring theory. Basic counting arguments together with relation between color

ordered amplitudes imply that these ni satisfy the Jacobi identities (3.2) by construction.
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3.1. The field theory setup

The set of (n− 2)! color ordered amplitudes An(1, 2ρ, . . . , (n− 1)ρ, n) with ρ ∈ Sn−2

and legs n and 1 fixed is sufficient to involve all of the (2n − 5)!! diagrams at least once.

According to the Kleiss-Kuijf relations [25] all the other subamplitudes are sums over

several An(1, 2ρ, . . . , (n − 1)ρ, n) with coefficients ±1. That is why we will refer to them

as the KK basis in the following. The (n− 2)! amplitudes at four-points are given by

A4(1, 2, 3, 4) =
ns

s
+
nu

u
, A4(1, 3, 2, 4) =

nt

t
− nu

u
,

while for five-points [1],

A5(1, 2, 3, 4, 5) =
n1

s12s45
+

n2

s23s51
+

n3

s12s34
+

n4

s23s45
+

n5

s34s51

A5(1, 4, 3, 2, 5) =
n6

s14s25
+

n5

s34s51
+

n7

s23s14
+

n8

s34s25
+

n2

s23s51

A5(1, 3, 4, 2, 5) =
n9

s13s25
− n5

s34s51
+

n10

s13s24
− n8

s34s25
+

n11

s51s24

A5(1, 2, 4, 3, 5) =
n12

s12s35
+

n11

s24s51
− n3

s12s34
+

n13

s35s24
− n5

s51s34

A5(1, 4, 2, 3, 5) =
n14

s14s35
− n11

s24s51
− n7

s14s23
− n13

s24s35
− n2

s23s51

A5(1, 3, 2, 4, 5) =
n15

s13s45
− n2

s23s51
− n10

s13s24
− n4

s23s45
− n11

s24s51

(3.3)

and their representation in terms of cubic graphs is depicted in Fig. 1. One possible

parametrization for the six point amplitude can be found in [26].

As mentioned in the introduction, the ni are not uniquely specified by the parametriza-

tion of A4 and A5 shown above. There still is a freedom to add zeros of the form

0 =
(

sij
sij

− skl

skl

)

× (. . .) to individual subamplitudes which amounts to reabsorbing contact

terms into a different numerator ni.

At four point level, the only Jacobi-like identity ns + nt − nu = 0 holds independent

of the ambiguity of reshuffling contact terms between the numerators. This is a feature of

the simple structure of A4 and its momentum phase space.

In A5, imposing the color algebra on the fifteen ni yields nine independent relations

0 = n3 − n5 + n8 = n3 − n1 + n12 = n10 − n11 + n13

0 = n4 − n2 + n7 = n4 − n1 + n15 = n10 − n9 + n15

0 = n8 − n6 + n9 = n5 − n2 + n11 = n7 − n6 + n14

(3.4)
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which leave six independent numerators. However, the kinematic Jacobi identities at five

and higher points generically fail to hold unless a specific class of choices for the ni is made.

a
. . .

b . .
.

. .
.
c

. . . dcini

si

+

b
. . .

a . .
.

. .
.
c

. . . d
cjnj

sj

−

b
. . .

a . .
.

. .
.
c

. . . d
cknk

sk

Fig. 2 Triplet of subdiagrams where the sum over the associated color

factor vanishes due to the Jacobi identity fe[abf c]de = 0.

More generally, if a suitable parametrization and contact term bookkeeping is chosen

the duality between color and kinematics manifests itself for each triplet of subdiagrams

shown in figure Fig. 2. For cubic graphs describing an n-point tree amplitude, there can

be arbitrary further subdiagrams a, b, c, d attached to the dotted lines with n− 4 common

propagators in total.

In an n-point tree level amplitude, if all the Jacobi-like identities for the (2n − 5)!!

numerators in An are satisfied, then a set of (n − 2)! independent ni remains. In the

following we will reverse the line of reasoning: If one can show that the KK basis

An(1, 2σ, . . . , (n−1)σ, n) of color ordered amplitudes can be expressed in terms of (n−2)!

basis numerators, then there must be as many equations between the larger set of (2n−5)!!

numerators as there are Jacobi identities.

3.2. A minimal kinematic basis from superstring theory

Supersymmetric field theory tree amplitudes can also be obtained from the low–energy

limit of superstring theory where the dimensionless combinations α′si1...ip of Regge slope α′

and Mandelstam bilinears si1...ip = 1
2
(ki1 + ki2 + . . . + kip)

2 are formally sent to zero.

Using the pure spinor formalism [9], we will show in [5] that the color stripped superstring

n−point amplitude is given by

Astring
n (1σ, 2σ, . . . , (n− 1)σ, n;α

′) = (2α′)n−3
n−2
∏

i=2

∫

Iσ

dzi
∏

j<k

|zjk|−2α′sjk

n−2
∑

j=1

〈T12...j Tn−1,n−2...j+1 Vn〉
(z12z23 . . . zp−1,p)(zn−1,n−2zn−2,n−3 . . . zj+2,j+1)

+ P(2, 3, . . . , n− 2)

(3.5)
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in terms of the BRST building blocks T12...p, with zjk = zj − zk. The P(2, 3, . . . , n − 2)

denotes the sum over all permutations of the labels 2, 3, . . . , n− 2 of the integrated vertex

operators (2.3).

The ordering σ ∈ Sn−1 of the external legs is reflected in the integration region

Iσ for the worldsheet positions z2σ
, z3σ

, . . . , z(n−2)σ , the remaining ones are fixed as

(z1σ
, z(n−1)σ , zn) = (0, 1,∞) by SL(2, R) invariance of the disk worldsheet. More pre-

cisely, Iσ is defined such that only those zi which respect the ordering

0 = z1σ
≤ z2σ

≤ z3σ
≤ . . . ≤ z(n−2)σ ≤ z(n−1)σ = 1

are integrated over.

To arrive at (3.5) from the pure spinor conformal field theory (CFT), one has to re-

express integrals with double pole factors like z−2
ij in terms of single pole integrals (with

integrands such as (zijzjk)
−1). The superfields associated with these world-sheet poles con-

spire such that the OPE residues of V1(z1)U2(z2) . . . Up(zp) in single pole integrals receive

all the corrections necessary to form BRST building blocks T12...p. It has already been

realized in [6,7] that double poles cause various technical complications and in particular

prevent the basis of kinematics to boil down to the desirable size of (n− 2)!.

The α′ → 0 limit of (3.5) extracts propagators of cubic field theory diagrams from the

n − 3 fold worldsheet integrals. Adjusting the integration region Iσ to the color ordering

makes sure that the integrals in Astring
n (1σ, 2σ, . . . , (n− 1)σ, n;α

′) only generate those pole

channels which appear in the corresponding field theory amplitude An(1σ, 2σ, . . . , (n −
1)σ, n). A method to efficiently extract the field theory limit of a general n-point integral

is described in [5].

The remarkable property of (3.5) in view of the BCJ organization is the number of

independent superfield kinematics 〈T12...jTn−1,n−2,...,j+1Vn〉. Each of the n − 2 terms in

the j sum of (3.5) involves (n − 3)! permutations of 〈T12...jTn−1,n−2,...,j+1Vn〉 in the legs

(2, 3, . . . , n − 2) such that we have (n − 2)! kinematic packages in total. The world-sheet

integrand remains the same for any color ordering, only the integration region Iσ changes

between the subamplitudes.

Hence, the (n−2)! basic kinematics 〈T12...jTn−1,n−2,...,j+1Vn〉 combine to the kinematic

factors for any color stripped superstring amplitude, and in particular, they generate all

the (2n − 5)!! BCJ numerators of the field theory amplitude in the α′ → 0 limit. Their

coefficients are determined by the pole structure of the integrals in the corresponding

8



integration region Iσ which is specified by the color ordering of An(1, 2σ, 3σ, . . . , (n −
1)σ, n).

As we have argued in the previous subsection – having a set of no more than (n− 2)!

independent numerators is necessary for imposing the Jacobi-like identities (dual to color

factors) on the (2n−5)!! numerators of the pole channels in various subamplitudes. In the

next paragraph we explain why the number (n− 2)! of kinematics in (3.5) is also sufficient

to satisfy the Jacobi relations.

3.3. The vanishing of numerator triplets

The fact that only (n − 2)! BCJ numerators can be linearly independent implies the

existence of as many linear homogeneous relations between the ni as there are Jacobi

identities. Since the field theory limits of the integrals in (3.5) involve no other coefficients

than 0 and ±1 for the propagators, these relations must be of the form

ni1 ± ni2 ∓ ni3 ± . . .∓ nip−1
± nip = 0, (3.6)

with a so far unspecified number p of terms. In order to show that they can always be

arranged into vanishing statements for triplets ni1 ± ni2 ∓ ni3 = 0 one has to make use of

the monodromy relations of field theory [1]

s12An(2, 1, 3, . . . , n) +
n−1
∑

j=3

(

j
∑

k=2

s1k

)

An(2, 3, . . . , j, 1, j + 1, . . . , n− 1, n) = 0, (3.7)

which allow to reduce the KK subamplitudes to a basis of (n−3)! independent ones. Their

string theory generalization replaces the sum
∑

k s1k by sine functions sin (2α′π
∑

k s1k)

[27,28].

By taking appropriate permutations of (3.7) and decomposing the occurring subam-

plitudes in pole channels, one can derive identities between Jacobi triplets (nik , nil , nim)

dual to color factors with cik + cil + cim = 0 of the following form [7,29]

∑

i

nik + nil + nim
∏n−4

αi
sαi

= 0. (3.8)

The i sum runs over n − 1 point channels of total number 2n−3(2n− 7)!!(n− 3)/(n− 2)!

and involves the n− 4 propagators sαi
common among the nik , nil and nim channels. As

a consquence, nik + nil + nim must vanish at the residue of the n − 4 poles, independent

on the assignment of contact terms to the numerators.
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Suppose the linear dependences (3.6) failed to make Jacobi triplets of BCJ numerators

vanish, i.e. p > 3, then (3.8) would involve terms

ni1 + ni2 + ni3
∏n−4

αi
sαi

= −
∑p

j=4 nij
∏n−4

αi
sαi

where each noncancelling nij>3
is muliplied with at least one propagator outside its chan-

nels. This is clearly incompatible with (3.8) because there will remain contributions with

a specific set of n− 4 poles from each term like that3.

The conclusion is that the (2n− 5)!!− (n− 2)! relations (3.6) can always be brought

into a form that reproduces all the dual Jacobi identities for the kinematic numerators

ni. If this was not the case, inconsistencies would arise in the monodromy relations (3.7)

or (3.8) between color ordered field theory amplitudes. Hence, the number (n − 2)! of

kinematics in (3.5) guarantees that all the ni constructed from the α′ → 0 limit of the

integrals over Iσ satisfy the Jacobi-like relations ni + nj + nk = 0.

3.4. The explicit formula for BCJ numerators

The worldsheet integrand of (3.5) suggests to label the (n− 2)! basis kinematics in an

n-point amplitude by an Sn−3 permutation σ and an integer l = 1, . . . , n− 2:

Kl
σ = 〈T12σ3σ ...lσTn−1,(n−2)σ ...(l+1)σVn〉, l = 1, . . . , n− 2, σ ∈ Sn−3 (3.9)

This makes sure that the residual Sn−3 relabelling symmetry stays visible in the KK basis

of the field theory limit. As we have mentioned before, knowing all the KK subamplitudes

An(1, 2ρ, . . . , (n−1)ρ, n) is sufficient to address each channel and to thereby identify all the

(2n− 5)!! numerators ni. The superstring amplitude (3.5) provides a general prescription

to construct these KK subamplitudes in terms of the basis kinematics Kl
σ defined by (3.9)

An(1, 2ρ, . . . , (n− 1)ρ, n) =
n−2
∑

l=1

∑

σ∈Sn−3

Pρ
(l,σ) Kl

σ

3 The claimed incompatibility rests on the linear independence of the (n − 2)! factorial basis

numerators. We wish to thank Henrik Johansson for pointing out that a loophole would arise

otherwise.
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This introduces a (n − 2)! × (n − 2)! matrix Pρ
(l,σ) of kinematic poles whose entries is

determined by the integral of the worldsheet polynomial associated with (l, σ) over the

integration region Iρ:

Pρ
(l,σ) = lim

α′→0
(2α′)n−3

n−2
∏

i=2

∫

Iρ

dzi

∏

j<k |zjk|−2α′sjk

z12σ
z2σ3σ

. . . z(l−1)σlσ zn−1,(n−2)σ . . . z(l+2)σ ,(l+1)σ

(3.10)

These α′ → 0 limits can be straightforwardly evaluated using the methods of [5].

The idea of introducing an (n−2)! vector of KK amplitudes and relating it to (n−2)!

independent numerators by a square matrix already appeared in [30]. In our situation,

the basis (3.9) of numerators is set by the superstring computation, and our Pρ
(l,σ) matrix

is a specialization of the propagator matrix M in this reference to the pure spinor basis

of kinematics. The linear dependences of KK subamplitudes due to BCJ relations (3.7)

imply that the (n− 2)!× (n− 2)! propagator matrices M or Pρ
(l,σ) have rank (n− 3)!.

Not all the entries of the pole matrix Pρ
(l,σ) have to be computed separately. The

following trick relates many of them by relabelling and thereby reduces the computational

effort on the way towards explicit BCJ numerators: Exclude the leg n − 1 from the ρ ∈
Sn−2 permutations specifying the KK subamplitudes. They then fall into n − 2 classes

An(1, 2σ, . . . , jσ, n − 1, (j + 1)σ, . . . , (n− 2)σ, n) with j − 1 legs between 1 and n − 1 and

another n−2−j legs between n−1 and n. The legs 2, 3, . . . , n−2 are interchanged by Sn−3

permutations σ like in (4.4). It is sufficient to compute one representative of the n−2 classes

of KK amplitudes, the others then follow as Sn−3 permutations in 2, 3, . . . , n − 2. More

precisely, once the first n− 2 columns of (3.10) with ρ = (2, 3, . . . , j, n− 1, j+1, . . . , n− 2)

and j = 1, 2, . . . , n− 2 are known, then the others follow from

Pρ=(2σ ,3σ,...,jσ,n−1,(j+1)σ,...,(n−2)σ)
(l,τ) = Pρ=(2,3,...,j,n−1,j+1,...,n−2)

(l,σ−1◦τ)
∣

∣

∣

ki 7→kσ(i)

(3.11)

where the concatenation of σ−1, τ ∈ Sn−3 is to be understood as (σ−1 ◦ τ)(i) = σ−1(τ(i)).

The proof of (3.11) is a simple matter of bookkeeping with world-sheet integration variables

in (3.10).

This relabelling strategy reduces the number of independent evaluations of (3.10) from

(n − 2)! × (n − 2)! down to (n − 2) × (n − 2)!, i.e. the work at this step is reduced by a

factor of (n − 3)!. But the success of these Sn−3 relabellings does not extend to the leg

n− 1. The Pρ
(l,σ) entries for the n− 2 classes of KK subamplitudes An(1, 2σ, . . . , jσ, n−

1, (j + 1)σ, . . . , (n− 2)σ, n) with j = 1, 2, . . . , n− 2 have a different number and structure
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of terms as j varies. This will become more obvious from the examples in the next section.

As a consequence, the ni appearing in these subamplitudes involve more basic kinematics

Kl
σ and do not follow from other BCJ numerators by relabelling.

3.5. Jacobi-friendly notation

At higher points it is not convenient to denote the BCJ numerators sequentially by

ni for i = 1, 2, . . . (2n− 5)!!. Already the presentation of the fifteen numerators in the five

point KK basis (3.3) suffers from the arbitrary assignment of numbers 1 to 15 to the cubic

diagrams. It is not at all obvious from their labels which of them combine to form the

Jacobi triplets (3.4).

Instead, we will use a notation introduced by [30] which reflects the structure of the

diagram and allows the associated propagators to be reconstructed. More importantly,

it makes the dual structure constant contraction available from which one can infer the

symmetry properties fabc = −f bac and the Jacobi identities f b[a1a2fa3]bc = 0. Let us

clarify these properties by explicit examples:

The four points amplitude encompasses three diagrams of the form

2

1

3

4

∼ 1

s12
(fa1a2bf ba3a4)× n[12, 34] =

csns

s

where n[12, 34] has the same symmetries as the structure constants involved:

n[ij, kl] = −n[ji, kl] = −n[ij, lk] = n[ji, lk], n[ij, kl] = n[kl, ij]

If we assign nt = n[13, 42] and nu = n[23, 41], then the Jacobi identity ns + nt − nu = 0

can be written more compactly as

n[1{2, 34}] := n[12, 34] + n[13, 42] + n[14, 23] = 0.

At five points, the first out of fifteen pole channels contributes

2

1

3
4

5

∼ 1

s12s45
(fa1a2bf ba3cf ca4a5)× n[12, 3, 45] =

c1n1

s12s45

where the kinematic numerators inherit their antisymmetry under flipping a cubic vertex

from the structure constants:

n[ij, k, lm] = −n[ji, k, lm] = −n[ij, k,ml] = n[ji, k,ml], n[ij, k, lm] = −n[lm, k, ij]

12



All the Jacobi identities (3.4) can be diagrammatically found by attaching a cubic vertex

with two external legs to one of the dotted lines of figure Fig. 2. They can be cast into

unified form

n[ij, {k, lm}] = 0.

Six point amplitudes introduce two topologies of cubic diagrams

2

1

3 4
5

6

∼ 1

s12s123s56
(fa1a2bf ba3cf ca4dfda5a6)× n[12, 3, 4, 56]

2

1

3 4

5

6

∼ 1

s12s34s56
(fa1a2bfa3a4cfa5a6df bcd)× n[12, 34, 56]

which imprint the following symmetries on the BCJ numerators:

n[ij, k, l,mp] = −n[ji, k, l,mp], n[ij, k, l,mp] = n[mp, l, k, ij]

n[ij, kl,mp] = −n[ji, kl,mp], n[ij, kl,mp] = −n[kl, ij,mp]
(3.12)

Also the Jacobi identites exhibit different topologies here, one can either attach three point

vertices to two different external lines of Fig. 2 or one color ordered four point diagram to

one external line:

n[ij, k, {l,mp}] = 0, n[ij, kl,mp] = n[ij, k, l,mp]− n[ij, l, k,mp]

The latter expresses any diagram of snowflake shape in terms of the other topology.

Seven points again introduce two topologies of cubic diagrams

2

1

3 4 5
6

7

∼ fa1a2bf ba3cf ca4dfda5efea6a7

s12s123s567s67
n[12, 3, 4, 5, 67]

2

1

3
4

5

6

7

∼ fa1a2bf ba3cf cdefda4a5fea6a7

s12s123s45s67
n [12, 3, 45, 67]

They give rise to symmetry properties

n[ij, k, l,m, pq] = −n[ji, k, l,m, pq], n[ij, k, l,m, pq] = −n[pq,m, l, k, ij]
n [ij, k, lm, pq] = −n [ji, k, lm, pq] = −n [ij, k,ml, pq] , n [ij, k, lm, pq] = −n [ij, k, pq, lm]

(3.13)
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and Jacobi identities which eliminate the topology with more branchings:

n[ij, k, l, {m, pq}] = 0, n [ij, k, lm, pq] = n[ij, k, l,m, pq]− n[ij, k,m, l, pq]

The four different topologies at eight points can still be captured by the suggestive nota-

tions n[ij, k, l,m, p, qr], n[ij, k, lm, p, qr], n [ij, k, l,mp, qr] and n [kl, ij,mp, qr]. Jacobi iden-

tities relate diagrams of different topology such that all of them can be represented in terms

of the simplest numerators n[ij, k, l,m, p, qr].

4. Explicit examples

In order to make the very general statements more tractable, we shall analyze explicit

examples up to seven-point in detail.

4.1. Four-point

Let us first of all compute the four-point numerators as a warm-up exercise. For n = 4,

the general formula (3.5) gives rise to one worldsheet integral and two z2 functions in the

integrand,

Astring
4 (1, 2ρ, 3ρ, 4;α

′) = 2α′

∫

Iρ

dz2 |z2|−2α′s|1− z2|−2α′u

{ 〈T12V3V4〉
z2

+
〈V1T23V4〉
1− z2

}

which can be easily evaluated in terms of the Euler Beta function. We obtain the following

entries for the propagator matrix (3.10) by taking the field theory limit:

(P(2,3)
1, P(2,3)

2) = lim
α′→0

2α′

∫ 1

0

dz2 |z2|−2α′s|1− z2|−2α′u

(

1

z2
,

1

1− z2

)

=

(

1

s
,
1

u

)

(P(3,2)
1, P(3,2)

2) = lim
α′→0

2α′

∫ ∞

1

dz2 |z2|−2α′s|1− z2|−2α′u

(

1

z2
,

1

1− z2

)

=

(

1

t
,− 1

u
− 1

t

)

(4.1)

The Sn−3 permutation σ which appears as a superscript label of the general Pρ
(l,σ) becomes

trivial at four points. This leads to field theory subamplitudes

A4(1, 2, 3, 4) =
ns

s
+
nu

u
, A4(1, 3, 2, 4) =

ns − nu

t
− nu

u
= −nt

t
− nu

u

with BCJ numerators that manifestly satisfy a Jacobi relation:

ns = 〈T12V3V4〉, nu = 〈V1T23V4〉, nt = nu − ns = 〈V1T23V4〉 − 〈T12V3V4〉

They are evaluated in superfield components in appendix C.
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4.2. Five-point

The color ordered five-point superstring amplitude encompasses six basis kinematics:

Astring
5 (1, 2ρ, 3ρ, 4ρ, 5;α

′) = (2α′)2
∫

Iρ

dz2 dz3
∏

j<k

|zjk|−2α′sjk (4.2)

( 〈T123V4V5〉
z12z23

+
〈T132V4V5〉
z13z32

+
〈T12T43V5〉
z12z43

+
〈T13T42V5〉
z13z42

+
〈V1T432V5〉
z43z32

+
〈V1T423V5〉
z42z23

)

The double pole z−2
23 appearing in the five point integrand of other references [6,7] was

absorbed into the single-pole terms such that BRST building blocks Tij and Tijk could be

formed. Absence of double poles is crucial for satisfying all the dual Jacobi relations and

its removal was essentially dictated by the BRST cohomology properties of those building

blocks [5,26].

Let us rewrite the superfields in the Kl
σ notation of subsection 3.4 in order to make

better use of the residual relabelling symmetry in 2 ↔ 3:

K3
(23) =〈T123V4V5〉, K2

(23) = 〈T12T43V5〉, K1
(23) = 〈V1T432V5〉

K3
(32) =〈T132V4V5〉, K2

(32) = 〈T13T42V5〉, K1
(32) = 〈V1T423V5〉

(4.3)

Performing the field theory limit of the integrals (4.2) gives rise to the following six KK

subamplitudes (where the permutation σ of 2 and 3 can be kept general because of (3.11))

A5(1, 2σ, 3σ, 4, 5) =
K3

σ(23)

s45s12σ

+
K1

σ(23) −K1
σ(32)

s51s2σ3σ

−
K2

σ(23)

s12σ
s3σ4

+
K3

σ(23) −K3
σ(32)

s2σ3σ
s45

+
K1

σ(23)

s3σ4s51

A5(1, 2σ, 4, 3σ, 5) =
K3

σ(23) +K2
σ(23)

s12σ
s3σ5

−
K1

σ(32)

s2σ4s51
+

K2
σ(23)

s3σ4s12
−

K2
σ(32) +K1

σ(32)

s3σ5s2σ4
−

K1
σ(23)

s51s3σ4

A5(1, 4, 2σ, 3σ, 5) =
K3

σ(23) +K2
σ(23) +K2

σ(32) +K1
σ(32)

s14s3σ5
+

K1
σ(32)

s2σ4s51

+
−K3

σ(32) +K3
σ(23) −K1

σ(23) +K1
σ(32)

s2σ3σ
s14

+
−K2

σ(32) +K1
σ(32)

s3σ5s2σ4
+

−K1
σ(23) +K1

σ(32)

s51s2σ3σ

(4.4)

The last pair of color orderings A5(1, 4, 2σ, 3σ, 5) has more complicated numerators be-

cause of the coefficient P(4,2σ,3σ)
(1,3σ,2σ) = 1

s14s3σ5
+ cyclic(1, 4, 2σ, 3σ, 5) that addresses

five different pole channels.

By comparing (4.4) with the A5 representation in the notation of [30],

A5(1, 2ρ, 3ρ, 4ρ, 5) =
n[12ρ, 3ρ, 4ρ5]

s12ρ
s4ρ5

+ cyclic(1, 2ρ, 3ρ, 4ρ, 5),
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we can quickly read off the kinematic numerators:

n[12σ, 3σ, 45] = K3
σ(23) n[3σ4, 5, 2σ1] = K2

σ(23)

n[2σ3σ, 4, 51] = K1
σ(23) −K1

σ(32) n[2σ3σ, 1, 45] = K3
σ(32) −K3

σ(23)

n[3σ4, 1, 2σ5] = K1
σ(23) +K2

σ(23) n[12σ, 4, 3σ5] = K3
σ(23) +K2

σ(23)

n[14, 3σ, 2σ5] = K3
σ(32) +K2

σ(23) +K2
σ(32) +K1

σ(23) n[51, 2σ, 3σ4] = K1
σ(23)

n[2σ3σ, 5, 14] = K3
σ(23) −K3

σ(32) +K1
σ(32) −K1

σ(23) (4.5)

It is sufficient to display nine of them, the rest follows from S2 relabelling 2 ↔ 3. The

n1, n2, . . . , n15 from the parametrization (3.3) translate into

n1 = n[12, 3, 45] n6 = n[14, 3, 25] n11 = n[24, 3, 51]

n2 = n[23, 4, 51] n7 = n[32, 5, 14] n12 = n[12, 4, 35]

n3 = n[34, 5, 12] n8 = n[25, 1, 43] n13 = n[35, 1, 24]

n4 = n[45, 1, 23] n9 = n[13, 4, 25] n14 = n[14, 2, 35]

n5 = n[51, 2, 34] n10 = n[42, 5, 13] n15 = n[13, 2, 45]

The way in which the n[ij, k, lm] are built out of Kj

σ(2,3) trivializes the Jacobi identities

(3.4) or n[ij, {k, lm}] = 0. However, the expressions (4.5) for n[ij, k, lm] do not exhibit

crossing symmetry including labels 1, 4 and 5.

In many instances, the symmetry properties (2.11) of the BRST building blocks within

Kl
σ allow to rewrite sums over several basic kinematics occurring in some ni as a single

superfield, e.g.

n2 = K1
(23) −K1

(32) = 〈(T123 − T132)V4V5〉 = 〈T321V4V5〉.

However, the right hand side is outside the five point basis of kinematics, so the Jacobi

relations between numerators are rather obscured by this building block manipulations.

At any number of legs, the basis of Kl
σ is designed such that all the symmetries of the

building blocks are already exploited, so we refrain from performing manipulations like

T123 − T132 = T321 in higher order examples.

4.3. Six-point

In six-point amplitudes, the propagator matrix (3.10) can be completely constructed

from the field theory limit of the four superstring subamplitudes associated with color or-

derings {1, 2, 3, 4, 5, 6}, {1, 2, 3, 5, 4, 6}, {1, 2, 5, 3, 4, 6}, {1, 5, 2, 3, 4, 6}. The S3 relabelling
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covariance in 2, 3, 4 connects them to the remaining 20 elements of the KK basis. Let us

give some representative sample entries of Pρ
(l,σ) here,

P(2345)
1,(423) =

1

s61s23s234
, P(2345)

4,(432) =
1

s56s234

(

1

s23
+

1

s34

)

P(2345)
4,(234) =

1

s56

(

1

s12s34
+

1

s12s123
+

1

s23s123
+

1

s23s234
+

1

s34s234

)

P(2354)
3,(234) =

1

s123

(

1

s12
+

1

s23

)(

1

s45
+

1

s46

)

P(5234)
1,(432) =

1

s61s25s34
+

1

s15s23s46
+

1

s15s125s34
+

1

s125s25s34
+

1

s15s125s46

+
1

s46s25s125
+

1

s15s23s234
+

1

s61s23s234
+

1

s15s234s34
+

1

s61s234s34

+
1

s61s23s235
+

1

s61s25s235
+

1

s46s23s235
+

1

s46s25s235

(4.6)

and refer the reader to Appendix A for the complete result.

Comparing the KK subamplitudes with

A6(1, 2ρ, 3ρ, 4ρ, 5ρ, 6) =
n[12ρ, 3ρ4ρ, 5ρ6]

s12ρ
s3ρ4ρ

s5ρ6
+
n[2ρ3ρ, 4ρ5ρ, 61]

s2ρ3ρ
s4ρ5ρ

s61

+

(

n[12ρ, 3ρ, 4ρ, 5ρ6]

s12ρ
s12ρ3ρ

s5ρ6
− n[12ρ, 3ρ, 6, 4ρ5ρ]

2s12ρ
s12ρ3ρ

s4ρ5ρ

− n[2ρ3ρ, 1, 4ρ, 5ρ6]

2s2ρ3ρ
s12ρ3ρ

s5ρ6
+ cyclic(1, 2ρ, 3ρ, 4ρ, 5ρ, 6)

)

allows to read off the 105 BCJ numerators. It is sufficient to display 25 of them in S3-

covariant form:

n[12σ, 3σ, 4σ, 56] = K4
σ(234) n[61, 2σ, 3σ, 54σ] = K1

σ(234)

n[12σ, 3σ, 6, 4σ5] = K3
σ(234) n[12σ, 6, 3σ, 54σ] = K2

σ(234)

n[12σ, 3σ4σ, 56] = K4
σ(234) −K4

σ(243) n[2σ3σ, 4σ5, 61] = K1
σ(324) −K1

σ(234)

n[12σ, 3σ5, 64σ] = K3
σ(243) +K2

σ(243) n[3σ4σ, 5, 6, 12σ] = K2
σ(234) −K2

σ(243)

n[4σ5, 6, 1, 2σ3σ] = K3
σ(324) −K3

σ(234) n[3σ4σ, 5, 2σ, 61] = K1
σ(234) −K1

σ(243)

n[2σ3σ, 1, 4σ, 56] = K4
σ(324) −K4

σ(234) n[12σ, 3σ, 5, 4σ6] = K4
σ(234) +K3

σ(234)

n[4σ6, 1, 2σ, 3σ5] = K2
σ(423) +K1

σ(423)
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n[2σ3σ, 4σ, 5, 61] = −K1
σ(234) +K1

σ(324) +K1
σ(423) −K1

σ(432)

n[56, 1, 2σ, 3σ4σ] = K4
σ(234) −K4

σ(243) −K4
σ(342) +K4

σ(432)

n[2σ3σ, 5, 1, 4σ6] = −K2
σ(423) +K2

σ(432) −K1
σ(423) +K1

σ(432)

n[2σ3σ, 1, 5, 4σ6] = K4
σ(234) −K4

σ(324) +K3
σ(234) −K3

σ(324)

n[12σ, 5, 3σ, 4σ6] = K4
σ(234) +K3

σ(234) +K3
σ(243) +K2

σ(243)

n[3σ4σ, 6, 1, 2σ5] = −K3
σ(342) +K3

σ(432) +K1
σ(342) −K1

σ(432)

n[12σ, 5, 6, 3σ4σ] = −K4
σ(234) +K4

σ(243) +K2
σ(234) −K2

σ(243)

n[2σ5, 1, 3σ, 4σ6] = K3
σ(342) +K2

σ(342) +K2
σ(432) +K1

σ(432)

n[15, 2σ, 3σ, 4σ6] = K4
σ(234) +K3

σ(234) +K3
σ(243) +K3

σ(342) +K2
σ(243) +K2

σ(342) +K2
σ(432) +K1

σ(432)

n[2σ3σ, 4σ, 6, 15] = K4
σ(234) −K4

σ(324) −K4
σ(423) +K4

σ(432) +K1
σ(234) −K1

σ(324) −K1
σ(423) +K1

σ(432)

n[15, 2σ, 6, 3σ4σ] = K4
σ(243) −K4

σ(234) −K3
σ(342) +K3

σ(432) +K2
σ(234) −K2

σ(243) +K1
σ(342) −K1

σ(432)

n[15, 2σ3σ, 4σ6] = K4
σ(234) −K4

σ(324) +K3
σ(234) −K3

σ(324) −K2
σ(423) +K2

σ(432) −K1
σ(423) +K1

σ(432)

They have been explicitly checked to satisfy all the 105 Jacobi relations n[ij, k, {l,mp}] = 0

and n[ij, kl,mp] = n[ij, k, l,mp]− n[ij, l, k,mp] (81 of which are linearly independent). It

is interesting to note that the number of Kl
σ forming the individual BCJ numerators is

always a power of two, i.e. 1, 2, 4 or 8 in this case.

4.4. Seven-point

Since the number of channels grows like (2n−5)!! in an n-point amplitude, a complete

list of all BCJ numerators becomes very lengthy beyond six points. Appendix B gives all

the 69 seven-point numerators which are not related by 2, 3, 4, 5 relabelling, they allow to

obtain all the 945 numerators by going through the σ ∈ S4 permutations of (2, 3, 4, 5). We

also checked that all the 825 independent numerators equations (out of 1260 in total) are

satisfied.

4.5. Higher-point and general observations

Instead of continuing the numerator list to higher points, we conclude this section with

some general remarks and observation on the structure of the string inspired expressions

for the BCJ numerators.
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Firstly, entries of the n point propagator matrix always factorize into sums of m

propagators with C(m) = (2m)!
m!(m+1)! terms,

Pρ
(l,σ) ∼

∏





C(m)
∑

j=1

1

s(α1)js(α2)j . . . s(αm)j



 (4.8)

where C(m) is the m’th Catalan number and counts the number of channels appearing in

a m + 2 point color ordered amplitude [31]. At n = 5, we have seen three different pole

structures in (4.4),

Pρ
(l,σ)

∣

∣

∣

n=5
∼
{

1

sαsβ
,

1

sα

(

1

sβ1

+
1

sβ2

)

,
5
∑

i=1

1

sαi
sβi

}

and the six point analogue contains the five types of products displayed in (4.6):

Pρ
(l,σ)

∣

∣

∣

n=6
∼
{

1

sαsβsγ
,

1

sαsβ

(

1

sγ1

+
1

sγ2

)

,
1

sα

(

1

sβ1

+
1

sβ2

)(

1

sγ1

+
1

sγ2

)

,

1

sα

5
∑

i=1

1

sβi
sγi

,
14
∑

j=1

1

sαj
sβj

sγj







The pattern was observed to persist up to eight-point. However, not all possible partitions

of the overall n−3 propagators into products of type (4.8) are realized. For instance, there

are no terms like
(

1
sα1

+ 1
sα2

)(

1
sβ1

+ 1
sβ2

)

at five points,
(

1
sα1

+ 1
sα2

)(

∑5
i=1

1
sβi

sγi

)

at

six points and
(

1
sα1

+ 1
sα2

)(

1
sβ1

+ 1
sβ2

)(

1
sγ1

+ 1
sγ2

)

1
sδ

at seven points.

Secondly, the number of Kl
σ kinematics entering the individual n point BCJ nu-

merators up to n = 8 is always a power of two 1, 2, 4, . . . , 2n−3. This can be largely

explained from the flipping antisymmetry of n[ij, k, . . .] in pairs of labels i, j sharing a

terminal three point vertex. If they are both from the range iσ, jσ ∈ {2, 3, . . . , n − 2},
then the Kl

σ are required to pair up with their i ↔ j images. Moreover, if several

other 2, 3, . . . , n − 2 labels kσ, lσ follow, then a nested antisymmetrization emerges, e.g.

n[iσjσ, kσ, lσ, . . .] ↔ Kl
σ([[[iσjσ]kσ]lσ]...)

.

Another source of doubling the terms is a terminal vertex with legs 1 and n − 1:

Swapping 1 ↔ n−1 maps Kl
σ to Kn−1−l

σ where σ denotes the permutation of reverse order,

σ(23 . . . p−1, p) = σ(p, p−1, . . .32). That is why n[1(n−1), . . .] can only contain pairs like

Kl
σ +Kn−1−l

σ which might be further antisymmetrized in some legs from {2, 3, . . . , n− 2}
due to another terminal vertex.
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The following table shows the distribution of the (2n− 5)!! numerators into packages

of 2j basis elements:

# terms 4pts 5pts 6pts 7pts 8pts

1 2 6 24 120 720

2 1 6 36 240 1800

4 3 30 270 2520

8 15 210 2520

16 105 1890

32 945

Table 1. The number of BCJ numerators in n-point amplitudes con-

taining 2j basis kinematics Kl
σ for j = 0, 1, . . ., n− 3.

We suspect that the grading of kinematic numerators according to their Kl
σ content is

connected with the factorization pattern (4.8) of Pρ
(l,σ) entries.

5. Concluding remarks

In this paper we have developed a method based on string theory to construct kine-

matic factors ni for gauge theory amplitudes which manifestly obey Jacobi identities dual

to the color algebra ci + cj + ck = 0. The fact that the vanishing of the dual numerator

triplet ni + nj + nk depends on the organization of contact terms complicates the direct

construction of ni within the gauge theory setup.

The pure spinor approach to superstring theory naturally introduces a kinematic basis

(3.9) of (n−2)! elements for n-point tree amplitudes of the gauge multiplet. The field theory

amplitude can be extracted by taking the low energy limit of the string result (3.5) using

the method of [5]. This determines the BCJ numerators ni for any pole channel in term

of the (n − 2)! basis kinematics. The resulting expressions for the ni are manifestly local

and supersymmetric. Although they originate from the ten dimensional SYM theory, it is

still straightforward to dimensionally reduce the superfield components and to recycle the

purely bosonic amplitudes for QCD or any other theory with less than sixteen supercharges.

The basis dimension (n − 2)! together with the BCJ relations between color ordered

field theory amplitudes imply that the string inspired ni satisfy the dual Jacobi identities

ni+nj+nk = 0 for each vanishing triplet of color factors (ci, cj , ck). However, as a price to

pay for the exact ni ↔ ci duality, crossing symmetry is lost for the kinematic numerators.
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This can be immediately recognized from the explicit solutions (4.5), (4.7) and appendix

B for the ni at five, six and seven points, respectively. It would be interesting to find

a compact form for crossing symmetric numerators while still preserving the Jacobi-like

relations.
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Appendix A. Field theory limit of six-point integrals

This appendix contains the field theory limit of the six-point superstring amplitudes

in the KK color orderings. It is the higher point analogue of the five point result (4.4).

A(1, 2σ, 3σ, 4σ, 5, 6) =
K3

σ(234)

s12σ
s4σ5s12σ3σ

+
−K2

σ(234)

s12σ
s4σ5s3σ4σ5

+
−K4

σ(234)

s12σ
s56s12σ3σ

+
K1

σ(234)

s16s4σ5s3σ4σ5
+

−K4
σ(234) +K4

σ(243)

s12σ
s3σ4σ

s56
+

−K2
σ(234) +K2

σ(243)

s12σ
s3σ4σ

s3σ4σ5

+
K1

σ(234) −K1
σ(324)

s16s2σ3σ
s4σ5

+
K1

σ(234) −K1
σ(243)

s16s3σ4σ
s3σ4σ5

+
K3

σ(234) −K3
σ(324)

s2σ3σ
s4σ5s12σ3σ

+
−K4

σ(234) +K4
σ(324)

s2σ3σ
s56s12σ3σ

+
K1

σ(234) −K1
σ(324) −K1

σ(423) +K1
σ(432)

s16s2σ3σ
s2σ3σ4σ

+
K1

σ(234) −K1
σ(243) −K1

σ(342) +K1
σ(432)

s16s3σ4σ
s2σ3σ4σ

+
−K4

σ(234) +K4
σ(324) +K4

σ(423) −K4
σ(432)

s2σ3σ
s56s2σ3σ4σ

+
−K4

σ(234) +K4
σ(243) +K4

σ(342) −K4
σ(432)

s3σ4σ
s56s2σ3σ4σ

A(1, 2σ, 3σ, 5, 4σ, 6) =
K2

σ(243)

s12σ
s3σ5s3σ4σ5

+
−K3

σ(234)

s12σ
s4σ5s12σ3σ

+
K2

σ(234)

s12σ
s4σ5s3σ4σ5
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+
−K1

σ(423)

s16s3σ5s2σ3σ5
+

−K1
σ(243)

s16s3σ5s3σ4σ5
+

−K1
σ(234)

s16s4σ5s3σ4σ5
+

K3
σ(243) +K2

σ(243)

s12σ
s3σ5s4σ6

+
−K4

σ(234) −K3
σ(234)

s12σ
s4σ6s12σ3σ

+
−K1

σ(234) +K1
σ(324)

s16s2σ3σ
s4σ5

+
−K1

σ(423) +K1
σ(432)

s16s2σ3σ
s2σ3σ5

+
−K3

σ(234) +K3
σ(324)

s2σ3σ
s4σ5s12σ3σ

+
−K2

σ(423) −K1
σ(423)

s3σ5s4σ6s2σ3σ5

+
−K4

σ(234) +K4
σ(324) −K3

σ(234) +K3
σ(324)

s2σ3σ
s4σ6s12σ3σ

+
−K2

σ(423) +K2
σ(432) −K1

σ(423) +K1
σ(432)

s2σ3σ
s4σ6s2σ3σ5

A(1, 2σ, 5, 3σ, 4σ, 6) =
−K2

σ(243)

s12σ
s3σ5s3σ4σ5

+
K1

σ(432)

s16s2σ5s2σ3σ5

+
K1

σ(423)

s16s3σ5s2σ3σ5
+

K1
σ(243)

s16s3σ5s3σ4σ5
+

−K1
σ(342) +K1

σ(432)

s16s2σ5s3σ4σ

+
−K1

σ(234) +K1
σ(243)

s16s3σ4σ
s3σ4σ5

+
K2

σ(234) −K2
σ(243)

s12σ
s3σ4σ

s3σ4σ5
+

−K3
σ(243) −K2

σ(243)

s12σ
s3σ5s4σ6

+
K2

σ(432) +K1
σ(432)

s2σ5s4σ6s2σ3σ5
+

K2
σ(423) +K1

σ(423)

s3σ5s4σ6s2σ3σ5

+
−K4

σ(234) −K3
σ(234) −K3

σ(243) −K2
σ(243)

s12σ
s4σ6s12σ5

+
−K4

σ(234) +K4
σ(243) +K2

σ(234) −K2
σ(243)

s12σ
s3σ4σ

s12σ5

+
K3

σ(342) −K3
σ(432) −K1

σ(342) +K1
σ(432)

s2σ5s3σ4σ
s12σ5

+
K3

σ(342) +K2
σ(342) +K2

σ(432) +K1
σ(432)

s2σ5s4σ6s12σ5

A(1, 5, 2σ, 3σ, 4σ, 6) =
−K3

σ(342) −K2
σ(342) −K2

σ(432) −K1
σ(432)

s2σ5s4σ6s12σ5

+
−K4

σ(234) +K4
σ(324) −K3

σ(234) +K3
σ(324) +K2

σ(423) −K2
σ(432) +K1

σ(423) −K1
σ(432)

s15s2σ3σ
s4σ6

+
−K4

σ(234) +K4
σ(324) +K4

σ(423) −K4
σ(432) −K1

σ(234) +K1
σ(324) +K1

σ(423) −K1
σ(432)

s15s2σ3σ
s2σ3σ4σ

+
−K4

σ(234) +K4
σ(243) −K3

σ(342) +K3
σ(432) +K2

σ(234) −K2
σ(243) +K1

σ(342) −K1
σ(432)

s15s3σ4σ
s12σ5

+
−K4

σ(234) +K4
σ(243) +K4

σ(342) −K4
σ(432) −K1

σ(234) +K1
σ(243) +K1

σ(342) −K1
σ(432)

s15s3σ4σ
s2σ3σ4σ

+
−K4

σ(234) −K3
σ(234) −K3

σ(243) −K3
σ(342) −K2

σ(243) −K2
σ(342) −K2

σ(432) −K1
σ(432)

s15s4σ6s12σ5

+
−K1

σ(432)

s16s2σ5s2σ3σ5
+

K1
σ(423) −K1

σ(432)

s16s2σ3σ
s2σ3σ5

+
K1

σ(342) −K1
σ(432)

s16s2σ5s3σ4σ

+
−K2

σ(432) −K1
σ(432)

s2σ5s4σ6s2σ3σ5

+
−K1

σ(234) +K1
σ(324) +K1

σ(423) −K1
σ(432)

s16s2σ3σ
s2σ3σ4σ

+
−K1

σ(234) +K1
σ(243) +K1

σ(342) −K1
σ(432)

s16s3σ4σ
s2σ3σ4σ
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+
K2

σ(423) −K2
σ(432) +K1

σ(423) −K1
σ(432)

s2σ3σ
s4σ6s2σ3σ5

+
−K3

σ(342) +K3
σ(432) +K1

σ(342) −K1
σ(432)

s2σ5s3σ4σ
s12σ5

Note that the basis kinematics K1
σ(432) contributes to each of the fourteen pole channels of

A6(1, 5, 2σ, 3σ, 4σ, 6).

Appendix B. Seven-point numerators

This appendix lists the kinematic numerators for the seven-point amplitude. Thanks

to S4 covariance in (2, 3, 4, 5) permutations, only 69 out of the 945 BCJ numerators have

to be displayed explicitly, the rest follows from relabelling of legs 2, 3, 4 and 5:

n[12σ, 3σ, 4σ, 5σ, 67] = K5
σ(2345) n[5σ6, 4σ, 7, 3σ, 12σ] = K3

σ(2345)

n[71, 2σ, 3σ, 4σ, 5σ6] = K1
σ(2345) n[12σ, 3σ, 4σ, 7, 5σ6] = K4

σ(2345)

n[12σ, 7, 3σ, 4σ, 5σ6] = K2
σ(2345)

n[12σ, 3σ, 4σ5σ, 67] = K5
σ(2345) −K5

σ(2354) n[4σ6, 3σ, 5σ7, 2σ1] = K2
σ(2534) +K3

σ(2534)

n[12σ, 7, 3σ, 6, 4σ5σ] = K2
σ(2354) −K2

σ(2345) n[2σ3σ, 1, 4σ, 7, 5σ6] = K4
σ(3245) −K4

σ(2345)

n[5σ6, 7, 12σ, 3σ4σ] = K4
σ(2435) −K4

σ(2345) n[71, 2σ, 3σ4σ, 5σ6] = K1
σ(2345) −K1

σ(2435)

n[12σ, 3σ, 4σ6, 75σ] = K3
σ(2354) +K4

σ(2354) n[12σ, 3σ, 4σ, 6, 5σ7] = K4
σ(2345) +K5

σ(2345)

n[12σ, 7, 3σ4σ, 5σ6] = K2
σ(2345) −K2

σ(2435) n[2σ3σ, 1, 4σ, 5σ, 67] = K5
σ(3245) −K5

σ(2345)

n[4σ5σ, 6, 7, 3σ, 12σ] = K3
σ(2354) −K3

σ(2345) n[5σ6, 4σ, 71, 2σ3σ] = K1
σ(3245) −K1

σ(2345)

n[5σ6, 4σ, 7, 1, 2σ3σ] = K3
σ(3245) −K3

σ(2345) n[5σ7, 1, 2σ, 3σ, 64σ] = K1
σ(5234) +K2

σ(5234)

n[67, 5σ, 12σ, 3σ4σ] = K5
σ(2435) −K5

σ(2345) n[71, 2σ, 3σ, 6, 4σ5σ] = K1
σ(2354) −K1

σ(2345)

n[4σ5σ, 6, 71, 2σ3σ] = K1
σ(2345) −K1

σ(2354) −K1
σ(3245) +K1

σ(3254)

n[4σ5σ, 6, 7, 1, 2σ3σ] = K3
σ(2345) −K3

σ(2354) −K3
σ(3245) +K3

σ(3254)

n[2σ3σ, 1, 4σ5σ, 67] = K5
σ(2354) −K5

σ(2345) +K5
σ(3245) −K5

σ(3254)

n[2σ3σ, 4σ, 5σ6, 71] = K1
σ(2345) −K1

σ(3245) −K1
σ(4235) +K1

σ(4325)

n[3σ4σ, 5σ, 6, 7, 12σ] = K2
σ(2435) −K2

σ(2345) +K2
σ(2534) −K2

σ(2543)

n[3σ4σ, 5σ, 67, 12σ] = K5
σ(2345) −K5

σ(2435) −K5
σ(2534) +K5

σ(2543)

n[3σ4σ, 6, 5σ7, 12σ] = K2
σ(2534) −K2

σ(2543) +K3
σ(2534) −K3

σ(2543)

n[4σ5σ, 7, 1, 2σ, 3σ6] = K1
σ(5423) −K1

σ(4523) +K3
σ(4523) −K3

σ(5423)

n[4σ5σ, 7, 12σ, 3σ6] = K2
σ(2453) −K2

σ(2543) −K4
σ(2453) +K4

σ(2543)

n[5σ6, 7, 1, 2σ, 3σ4σ] = K4
σ(2435) −K4

σ(2345) +K4
σ(3425) −K4

σ(4325)

n[5σ7, 1, 2σ3σ, 4σ6] = K1
σ(5324) −K1

σ(5234) −K2
σ(5234) +K2

σ(5324)

n[12σ, 3σ, 6, 4σ, 5σ7] = K3
σ(2354) +K4

σ(2345) +K4
σ(2354) +K5

σ(2345)

n[12σ, 3σ, 6, 7, 4σ5σ] = K3
σ(2345) −K3

σ(2354) −K5
σ(2345) +K5

σ(2354)
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n[2σ3σ, 1, 4σ6, 5σ7] = K3
σ(2354) −K3

σ(3254) +K4
σ(2354) −K4

σ(3254)

n[2σ3σ, 1, 4σ, 6, 5σ7] = K4
σ(3245) −K4

σ(2345) −K5
σ(2345) +K5

σ(3245)

n[3σ4σ, 5σ, 6, 2σ, 71] = K1
σ(2435) −K1

σ(2345) +K1
σ(2534) −K1

σ(2543)

n[5σ7, 1, 2σ, 6, 3σ4σ] = K1
σ(5234) −K1

σ(5243) +K2
σ(5234) −K2

σ(5243)

n[5σ7, 6, 12σ, 3σ4σ] = K4
σ(2435) −K4

σ(2345) −K5
σ(2345) +K5

σ(2435)

n[67, 5σ, 1, 2σ, 3σ4σ] = K5
σ(2435) −K5

σ(2345) +K5
σ(3425) −K5

σ(4325)

n[5σ7, 4σ, 1, 2σ, 63σ] = K1
σ(5423) +K2

σ(4523) +K2
σ(5423) +K3

σ(4523)

n[5σ7, 4σ, 12σ, 3σ6] = K2
σ(2543) +K3

σ(2453) +K3
σ(2543) +K4

σ(2453)

n[2σ3σ, 1, 6, 7, 4σ5σ] = −K3
σ(2345) +K3

σ(2354) +K3
σ(3245) −K3

σ(3254)

+K5
σ(2345) −K5

σ(2354) −K5
σ(3245) +K5

σ(3254)

n[67, 1, 2σ3σ, 4σ5σ] = +K5
σ(2345) −K5

σ(2354) −K5
σ(3245) +K5

σ(3254)

−K5
σ(4523) +K5

σ(4532) +K5
σ(5423) −K5

σ(5432)

n[12σ, 6, 3σ4σ, 5σ7] = −K2
σ(2534) +K2

σ(2543) −K3
σ(2534) +K3

σ(2543)

+K4
σ(2345) −K4

σ(2435) +K5
σ(2345) −K5

σ(2435)

n[2σ3σ, 4σ, 5σ, 6, 71] = +K1
σ(2345) −K1

σ(3245) −K1
σ(4235) +K1

σ(4325)

−K1
σ(5234) +K1

σ(5324) +K1
σ(5423) −K1

σ(5432)

n[2σ6, 1, 3σ, 7, 4σ5σ] = +K1
σ(4532) −K1

σ(5432) +K2
σ(3452) −K2

σ(3542)

−K3
σ(4532) +K3

σ(5432) −K4
σ(3452) +K4

σ(3542)

n[3σ4σ, 5σ, 7, 1, 2σ6] = −K1
σ(3452) +K1

σ(4352) +K1
σ(5342) −K1

σ(5432)

−K4
σ(3452) +K4

σ(4352) +K4
σ(5342) −K4

σ(5432)

n[4σ5σ, 7, 1, 6, 2σ3σ] = +K1
σ(4523) −K1

σ(4532) −K1
σ(5423) +K1

σ(5432)

−K3
σ(4523) +K3

σ(4532) +K3
σ(5423) −K3

σ(5432)

n[5σ7, 4σ, 1, 6, 2σ3σ] = +K1
σ(5423) −K1

σ(5432) +K2
σ(4523) −K2

σ(4532)

+K2
σ(5423) −K2

σ(5432) +K3
σ(4523) −K3

σ(4532)

n[67, 1, 2σ, 3σ, 4σ5σ] = +K5
σ(2345) −K5

σ(2354) −K5
σ(2453) +K5

σ(2543)

−K5
σ(3452) +K5

σ(3542) +K5
σ(4532) −K5

σ(5432)

n[71, 6, 2σ3σ, 4σ5σ] = −K1
σ(2345) +K1

σ(2354) +K1
σ(3245) −K1

σ(3254)

+K1
σ(4523) −K1

σ(4532) −K1
σ(5423) +K1

σ(5432)

n[12σ, 6, 3σ, 4σ, 5σ7] = +K2
σ(2543) +K3

σ(2354) +K3
σ(2453) +K3

σ(2543)

+K4
σ(2345) +K4

σ(2354) +K4
σ(2453) +K5

σ(2345)

n[12σ, 6, 3σ, 7, 4σ5σ] = +K2
σ(2453) −K2

σ(2543) +K3
σ(2345) −K3

σ(2354)

−K4
σ(2453) +K4

σ(2543) −K5
σ(2345) +K5

σ(2354)

n[2σ3σ, 1, 6, 4σ, 5σ7] = −K3
σ(2354) +K3

σ(3254) −K4
σ(2345) −K4

σ(2354)

+K4
σ(3245) +K4

σ(3254) −K5
σ(2345) +K5

σ(3245)
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n[2σ3σ, 4σ, 6, 1, 5σ7] = +K1
σ(5234) −K1

σ(5324) −K1
σ(5423) +K1

σ(5432)

+K2
σ(5234) −K2

σ(5324) −K2
σ(5423) +K2

σ(5432)

n[2σ6, 1, 3σ4σ, 5σ7] = −K1
σ(5342) +K1

σ(5432) −K2
σ(5342) +K2

σ(5432)

+K3
σ(3452) −K3

σ(4352) +K4
σ(3452) −K4

σ(4352)

n[3σ4σ, 5σ, 7, 6, 12σ] = −K2
σ(2345) +K2

σ(2435) +K2
σ(2534) −K2

σ(2543)

−K5
σ(2345) +K5

σ(2435) +K5
σ(2534) −K5

σ(2543)

n[5σ7, 6, 1, 2σ, 3σ4σ] = −K4
σ(2345) +K4

σ(2435) +K4
σ(3425) −K4

σ(4325)

−K5
σ(2345) +K5

σ(2435) +K5
σ(3425) −K5

σ(4325)

n[2σ6, 1, 3σ, 4σ, 5σ7] = +K1
σ(5432) +K2

σ(3542) +K2
σ(4532) +K2

σ(5432)

+K3
σ(3452) +K3

σ(3542) +K3
σ(4532) +K4

σ(3452)

n[4σ5σ, 7, 16, 2σ3σ] = +K1
σ(4523) −K1

σ(4532) −K1
σ(5423) +K1

σ(5432) −K5
σ(3245) +K5

σ(3254)

−K3
σ(2345) +K3

σ(2354) +K3
σ(3245) −K3

σ(3254) −K3
σ(4523) +K3

σ(4532)

+K3
σ(5423) −K3

σ(5432) +K5
σ(2345) −K5

σ(2354)

n[16, 2σ, 3σ4σ, 5σ7] = −K1
σ(5342) +K1

σ(5432) −K2
σ(2534) +K2

σ(2543) +K5
σ(2345) −K5

σ(2435)

−K2
σ(5342) +K2

σ(5432) −K3
σ(2534) +K3

σ(2543) +K3
σ(3452) −K3

σ(4352)

+K4
σ(2345) −K4

σ(2435) +K4
σ(3452) −K4

σ(4352)

n[16, 7, 2σ3σ, 4σ5σ] = +K1
σ(2345) −K1

σ(2354) −K1
σ(3245) +K1

σ(3254) −K5
σ(5423) +K5

σ(5432)

−K1
σ(4523) +K1

σ(4532) +K1
σ(5423) −K1

σ(5432) −K5
σ(2345) +K5

σ(2354)

+K5
σ(3245) −K5

σ(3254) +K5
σ(4523) −K5

σ(4532)

n[2σ3σ, 4σ, 5σ, 7, 16] = −K1
σ(2345) +K1

σ(3245) +K1
σ(4235) −K1

σ(4325) +K5
σ(5423) −K5

σ(5432)

+K1
σ(5234) −K1

σ(5324) −K1
σ(5423) +K1

σ(5432) +K5
σ(2345) −K5

σ(3245)

−K5
σ(4235) +K5

σ(4325) −K5
σ(5234) +K5

σ(5324)

n[2σ3σ, 4σ, 5σ7, 16] = +K1
σ(5234) −K1

σ(5324) −K1
σ(5423) +K1

σ(5432) −K5
σ(4235) +K5

σ(4325)

+K2
σ(5234) −K2

σ(5324) −K2
σ(5423) +K2

σ(5432) +K4
σ(2345) −K4

σ(3245)

−K4
σ(4235) +K4

σ(4325) +K5
σ(2345) −K5

σ(3245)

n[16, 2σ, 3σ, 4σ, 5σ7] = +K1
σ(5432) +K2

σ(2543) +K2
σ(3542) +K2

σ(4532) +K4
σ(3452) +K5

σ(2345)

+K2
σ(5432) +K3

σ(2354) +K3
σ(2453) +K3

σ(2543) +K3
σ(3452) +K3

σ(3542)

+K3
σ(4532) +K4

σ(2345) +K4
σ(2354) +K4

σ(2453)

n[16, 2σ, 3σ, 7, 4σ5σ] = +K1
σ(4532) −K1

σ(5432) +K2
σ(2453) −K2

σ(2543) −K5
σ(2345) +K5

σ(2354)

+K2
σ(3452) −K2

σ(3542) +K3
σ(2345) −K3

σ(2354) −K3
σ(4532) +K3

σ(5432)

−K4
σ(2453) +K4

σ(2543) −K4
σ(3452) +K4

σ(3542)

n[3σ4σ, 5σ, 7, 2σ, 16] = −K1
σ(3452) +K1

σ(4352) +K1
σ(5342) −K1

σ(5432) +K5
σ(2534) −K5

σ(2543)

−K2
σ(2345) +K2

σ(2435) +K2
σ(2534) −K2

σ(2543) −K4
σ(3452) +K4

σ(4352)

+K4
σ(5342) −K4

σ(5432) −K5
σ(2345) +K5

σ(2435)
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n[5σ7, 4σ, 16, 2σ3σ] = +K1
σ(5423) −K1

σ(5432) +K2
σ(4523) −K2

σ(4532) −K5
σ(2345) +K5

σ(3245)

+K2
σ(5423) −K2

σ(5432) −K3
σ(2354) +K3

σ(3254) +K3
σ(4523) −K3

σ(4532)

−K4
σ(2345) −K4

σ(2354) +K4
σ(3245) +K4

σ(3254) (B.1)

They follow from comparing the field theory limit of Astring
7 (1, 2ρ, 3ρ, 4ρ, 5ρ, 6ρ, 7) with

A7(1, 2ρ, 3ρ, 4ρ, 5ρ, 6ρ, 7) =
n [12ρ, 3ρ, 4ρ5ρ, 6ρ7]

s12ρ
s12ρ3ρ

s4ρ5ρ
s6ρ7

− n [2ρ3ρ, 1, 4ρ5ρ, 6ρ7]

s2ρ3ρ
s12ρ3ρ

s4ρ5ρ
s6ρ7

+
n[12ρ, 3ρ, 4ρ, 5ρ, 6ρ7]

s12ρ
s12ρ3ρ

s5ρ6ρ7s6ρ7
− n[2ρ3ρ, 1, 4ρ, 5ρ, 6ρ7]

s2ρ3ρ
s12ρ3ρ

s5ρ6ρ7s6ρ7
− n[12ρ, 3ρ, 4ρ, 7, 5ρ6ρ]

s12ρ
s12ρ3ρ

s5ρ6ρ7s5ρ6ρ

+
n[2ρ3ρ, 1, 4ρ, 7, 5ρ6ρ]

s2ρ3ρ
s12ρ3ρ

s5ρ6ρ7s5ρ6ρ

+ cyclic(1, 2ρ, 3ρ, 4ρ, 5ρ, 6ρ, 7)

Appendix C. Component expressions at four-point

This appendix gives an example how the supersymmetric expressions for BCJ numer-

ators decompose in components. In general, component expansion spoils the simplicity

of the pure spinor superspace results; but they can be done [21]. At five point level,

for instance, the innocent-looking numerator 〈T12T34V5〉 contributes ∼ 100 terms to the

five gluon amplitude. That is why we give no more than the four point building blocks

ns = 〈T12V3V4〉 = 〈V1V2T34〉.
There are four inequivalent bose-fermi combinations to consider, namely

(1, 2, 3, 4) ∈
{

(b, b, b, b), (f, f, b, b), (b, f, b, f), (f, f, f, f)
}

. (C.1)

The numerator then evaluates [21] to

2880 ns

∣

∣

∣

bbbb
= −(k1 · e2)(k1 · e4)(e1 · e3)− (k1 · e2)(k2 · e4)(e1 · e3)

+(k1 · e2)(k4 · e1)(e3 · e4)− (k1 · e2)(k4 · e3)(e1 · e4) + (k1 · e3)(k1 · e4)(e1 · e2)
+(k1 · e3)(k2 · e4)(e1 · e2) + (k1 · e4)(k2 · e1)(e2 · e3) + (k1 · e4)(k4 · e3)(e1 · e2)
+(k2 · e1)(k2 · e4)(e2 · e3)− (k2 · e1)(k4 · e2)(e3 · e4) + (k2 · e1)(k4 · e3)(e2 · e4)

+
1

4
(s14 − s13)(e

1 · e2)(e3 · e4) + s12
4

[

(e1 · e4)(e2 · e3)− (e1 · e3)(e2 · e4)
]

2880 ns

∣

∣

∣

ffbb
= (χ1γe

3

χ2)(k1 ·e4)−(χ1γk
4

χ2)(e3 ·e4)+(χ1γe
3

χ2)(k2 ·e4)+(χ1γe
4

χ2)(k4 ·e3)

2880 ns

∣

∣

∣

bfbf
=

1

2

[

(χ2γk
1e1e3χ4)+(χ2γk

1

χ4)(e1 ·e3)−(χ2γe
1

χ4)(k1 ·e3)
]

−(χ2γe
3

χ4)(k2 ·e1)

2880 ns

∣

∣

∣

ffff
= (χ1γmχ2)(χ3γmχ

4)

where the SCHOONSCHIP notation has been used, i.e., (χ1γmχ3)e2m ≡ (χ1γe
2

χ3) as

well as (χ2γmnpχ4)k1me
1
ne

3
p ≡ (χ2γk

1e1e3χ4). The zero mode integrations involved in the

four-point calculations have been performed in [19] for the first time.
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Appendix D. Spinor helicity evaluation at five-point

In this appendix, we will express the BCJ numerators of a five gluon MHV amplitude

in terms of spinor helicity variables. This is meant as a sample calculation showing the

relevance of our methods for D = 4 physics.

Doing so requires running the program [21] for expanding 〈TijTklVm〉 and 〈TijkVlVm〉
in superfield components, discarding all fermionic contributions. As we have emphasized in

the previous appendix, evaluation in components spoils the compactness of the superspace

expressions: Each of the brackets above contain several terms with products of polarization

vectors and momenta before plugging in the helicity specific spinor products.

If the helicities of the gluons are (−−+++) we use the following conventions,

eIαα̇ =
√
2
ψI
αχ

I
α̇

[ψ
I
χI ]

, I = 1, 2, eJ
β̇β

=
√
2
ψ
J

β̇χ
J
β

〈χJψJ〉 , J = 3, 4, 5 (D.1)

where 〈ψχ〉 = ψαχα = ǫαβψβχα and [ψχ] = ψα̇χ
α̇ = ǫα̇β̇ψβ̇χ

α̇ are the spinor products

and 〈ij〉[ij] = −2sij . For the specific choice (2, 1, 1, 1, 1) of reference momenta χJ
α, χ

I
α̇ they

imply

(e1 · e3) = (e1 · e4) = (e1 · e5) = (e3 · e4) = (e3 · e5) = (e4 · e5) = 0

(k2 · e1) = (k1 · e2) = (k1 · e3) = (k1 · e4) = (k1 · e5) = 0

and we quickly obtain the following basis kinematics (dropping an overall numerical coef-

ficient)

K1
(23) =

〈12〉3[25]2[43]
[12]〈13〉〈14〉 , K1

(32) =
〈12〉3[24][25][53]
[12]〈13〉〈14〉 , K2

(23) = 0

K2
(32) =

〈12〉3[23][24][35]
[12]〈14〉〈51〉 , K3

(23) = 0, K3
(32) =

〈12〉3[23]2[45]
[12]〈14〉〈15〉

(D.2)

which translates into BCJ numerators n1 = n3 = n12 = 0 and

(n2,n4, n5, n6, n7, n8) =
〈12〉3
[12]

×
(

[23][25][45]

〈13〉〈14〉 ,
[23]2[45]

〈14〉〈51〉 ,
[25]2[43]

〈13〉〈14〉 ,
[24][25][34]

〈13〉〈15〉 ,
[23][24][45]

〈13〉〈51〉 ,
[25]2[43]

〈13〉〈14〉

)

(n9, n10,n11, n13, n14, n15) =
〈12〉3
[12]

×
(

[23][25][34]

〈14〉〈51〉 ,
[23][24][35]

〈14〉〈51〉 ,
[24][25][35]

〈13〉〈14〉 ,
[24]2[35]

〈13〉〈51〉 ,
[24]2[35]

〈13〉〈15〉 ,
[23]2[45]

〈14〉〈15〉

)

(D.3)
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They can be easily checked to reproduce the Parke-Taylor formula [32,33].

All the nonlocalities ∼ [12]−1, 〈13〉−1, 〈14〉−1, 〈15〉−1 are spurious and arise from the

reference momentum dependent denominators of (D.1). As we have emphasized, all the ni

in this work are local in any spacetime dimension.
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