64 research outputs found

    Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones

    Get PDF
    Environmental change has been proposed as a factor that contributed to the extinction of the Neanderthals in Europe during MIS3. Currently, the different local environmental conditions experienced at the time when Anatomically Modern Humans (AMH) met Neanderthals are not well known. In the Western Pyrenees, particularly, in the eastern end of the Cantabrian coast of the Iberian Peninsula, extensive evidence of Neanderthal and subsequent AMH activity exists, making it an ideal area in which to explore the palaeoenvironments experienced and resources exploited by both human species during the Middle to Upper Palaeolithic transition. Red deer and horse were analysed using bone collagen stable isotope analysis to reconstruct environmental conditions across the transition. A shift in the ecological niche of horses after the Mousterian demonstrates a change in environment, towards more open vegetation, linked to wider climatic change. In the Mousterian, Aurignacian and Gravettian, high inter-individual nitrogen ranges were observed in both herbivores. This could indicate that these individuals were procured from areas isotopically different in nitrogen. Differences in sulphur values between sites suggest some variability in the hunting locations exploited, reflecting the human use of different parts of the landscape. An alternative and complementary explanation proposed is that there were climatic fluctuations within the time of formation of these archaeological levels, as observed in pollen, marine and ice cores.This research was funded by the European Commission through a Marie Curie Career Integration Grant (FP7- PEOPLE-2012-CIG-322112), by the Spanish Ministry of Economy and Competitiveness (HAR2012-33956 and Ramon y Cajal-2011-00695), the University of Cantabria and Campus International to ABMA. Radiocarbon dating at ORAU was funded by MINECO-HAR2012-33956 project. J.J was supported initially by the FP7- PEOPLE-2012-CIG-322112 and later by a Marie Curie Individual Fellowship (H2020-MSCA-IF-2014-656122). Laboratory work, associated research expenses and isotopic analysis were kindly funded by the Max Planck Society to M.R

    Energy conservation more effective with rebound policy

    Get PDF
    This article sketches the problem of indirect energy use effects, also known as rebound, of energy conservation. There is widespread support for energy conservation, especially when it is voluntary, as this seems a cheap way to realize environmental and energy-climate goals. However, this overlooks the phenomenon of rebound. The topic of energy rebound has mainly attracted attention from energy analysts, but has been surprisingly neglected in environmental economics, even though economists generally are concerned with indirect or economy-wide impacts of technical change and policies. This paper presents definitions and interpretations of energy and environmental rebound, as well as four fundamental reasons for the existence of the rebound phenomenon. It further offers the most complete list of rebound pathways or mechanisms available in the literature. In addition, it discusses empirical estimates of rebound and addresses the implications of uncertainties and difficulties in assessing rebound. Suggestions are offered for strategies and public policies to contain rebound. It is advised that rebound evaluation is an essential part of environmental policy and project assessments. As opposed to earlier studies, this paper stresses the relevance of the distinction between energy conservation resulting from autonomous demand changes and from efficiency improvements in technology/equipment. In addition, it argues that rebound is especially relevant for developing countries. © 2010 The Author(s)

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron

    mtDNA haplogroup X: An ancient link between Europe/Western Asia and North America?

    No full text
    On the basis of comprehensive RFLP analysis, it has been inferred that approximately 97% of Native American mtDNAs belong to one of four major founding mtDNA lineages, designated haplogroups "A"-"D." It has been proposed that a fifth mtDNA haplogroup (haplogroup X) represents a minor founding lineage in Native Americans. Unlike haplogroups A-D, haplogroup X is also found at low frequencies in modern European populations. To investigate the origins, diversity, and continental relationships of this haplogroup, we performed mtDNA high-resolution RFLP and complete control region (CR) sequence analysis on 22 putative Native American haplogroup X and 14 putative European haplogroup X mtDNAs. The results identified a consensus haplogroup X motif that characterizes our European and Native American samples. Among Native Americans, haplogroup X appears to be essentially restricted to northern Amerindian groups, including the Ojibwa, the Nuu-Chah-Nulth, the Sioux, and the Yakima, although we also observed this haplogroup in the Na-Dene-speaking Navajo. Median network analysis indicated that European and Native American haplogroup X mtDNAs, although distinct, nevertheless are distantly related to each other. Time estimates for the arrival of X in North America are 12,000-36,000 years ago, depending on the number of assumed founders, thus supporting the conclusion that the peoples harboring haplogroup X were among the original founders of Native American populations. To date, haplogroup X has not been unambiguously identified in Asia, raising the possibility that some Native American founders were of Caucasian ancestry
    corecore