2,529 research outputs found

    Boosting BCG with recombinant modified vaccinia ankara expressing antigen 85A: Different boosting intervals and implications for efficacy trials

    Get PDF
    Objectives. To investigate the safety and immunogenicity of boosting BCG with modified vaccinia Ankara expressing antigen 85A (MVA85A), shortly after BCG vaccination, and to compare this first with the immunogenicity of BCG vaccination alone and second with a previous clinical trial where MVA85A was administered more than 10 years after BCG vaccination. Design. There are two clinical trials reported here: a Phase I observational trial with MVA85A; and a Phase IV observational trial with BCG. These clinical trials were all conducted in the UK in healthy, HIV negative, BCG naı¨ve adults. Subjects were vaccinated with BCG alone; or BCG and then subsequently boosted with MVA85A four weeks later (short interval). The outcome measures, safety and immunogenicity, were monitored for six months. The immunogenicity results from this short interval BCG prime–MVA85A boost trial were compared first with the BCG alone trial and second with a previous clinical trial where MVA85A vaccination was administered many years after vaccination with BCG. Results. MVA85A was safe and highly immunogenic when administered to subjects who had recently received BCG vaccination. When the short interval trial data presented here were compared with the previous long interval trial data, there were no significant differences in the magnitude of immune responses generated when MVA85A was administered shortly after, or many years after BCG vaccination. Conclusions. The clinical trial data presented here provides further evidence of the ability of MVA85A to boost BCG primed immune responses. This boosting potential is not influenced by the time interval between prior BCG vaccination and boosting with MVA85A. These findings have important implications for the design of efficacy trials with MVA85A. Boosting BCG induced anti-mycobacterial immunity in either infancy or adolescence are both potential applications for this vaccine, given the immunological data presented here. Trial Registration. ClinicalTrials.Oxford University was the sponsor for all the clinical trials reported here

    Roles for Treg expansion and HMGB1 signaling through the TLR1-2-6 axis in determining the magnitude of the antigen-specific immune response to MVA85A

    Get PDF
    © 2013 Matsumiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedA better understanding of the relationships between vaccine, immunogenicity and protection from disease would greatly facilitate vaccine development. Modified vaccinia virus Ankara expressing antigen 85A (MVA85A) is a novel tuberculosis vaccine candidate designed to enhance responses induced by BCG. Antigen-specific interferon-γ (IFN-γ) production is greatly enhanced by MVA85A, however the variability between healthy individuals is extensive. In this study we have sought to characterize the early changes in gene expression in humans following vaccination with MVA85A and relate these to long-term immunogenicity. Two days post-vaccination, MVA85A induces a strong interferon and inflammatory response. Separating volunteers into high and low responders on the basis of T cell responses to 85A peptides measured during the trial, an expansion of circulating CD4+ CD25+ Foxp3+ cells is seen in low but not high responders. Additionally, high levels of Toll-like Receptor (TLR) 1 on day of vaccination are associated with an increased response to antigen 85A. In a classification model, combined expression levels of TLR1, TICAM2 and CD14 on day of vaccination and CTLA4 and IL2Rα two days post-vaccination can classify high and low responders with over 80% accuracy. Furthermore, administering MVA85A in mice with anti-TLR2 antibodies may abrogate high responses, and neutralising antibodies to TLRs 1, 2 or 6 or HMGB1 decrease CXCL2 production during in vitro stimulation with MVA85A. HMGB1 is released into the supernatant following atimulation with MVA85A and we propose this signal may be the trigger activating the TLR pathway. This study suggests an important role for an endogenous ligand in innate sensing of MVA and demonstrates the importance of pattern recognition receptors and regulatory T cell responses in determining the magnitude of the antigen specific immune response to vaccination with MVA85A in humans.This work was funded by the Wellcome Trust. MM has a Wellcome Trust PhD studentship and HM is a Wellcome Trust Senior Fello

    Clonal Population of Mycobacterium tuberculosis Strains Reside within Multiple Lung Cavities

    Get PDF
    (MTB) are localized within lung cavities of patients suffering from chronic progressive TB.Multiple cavity isolates from lung of 5 patients who had undergone pulmonary resection surgery were analyzed on the basis of their drug susceptibility profile, and genotyped by spoligotyping and 24-loci MIRU-VNTR. The patients past history including treatment was studied. Three of the 5 patients had extensive drug resistant TB. Heteroresistance was also reported within different cavity isolates of the lung. Both genotyping methods reported the presence of clonal population of MTB strain within different cavities of the each patient, even those reporting heteroresistance. Four of the 5 patients were infected with a population of the Beijing genotype. Post-surgery they were prescribed a drug regimen consisting of cycloserine, a fluoroquinolone and an injectable drug. A 6 month post-surgery follow-up reported only 2 patients with positive clinical outcome, showing sputum conversion.Identical spoligotype patterns and MIRU-VNTR profiles between multiple cavities of each patient, characterize the presence of clonal population of MTB strains (and absence of multiple MTB infection)

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model

    The Transmembrane Isoform of Plasmodium falciparum MAEBL Is Essential for the Invasion of Anopheles Salivary Glands

    Get PDF
    Malaria transmission depends on infective stages in the mosquito salivary glands. Plasmodium sporozoites that mature in midgut oocysts must traverse the hemocoel and invade the mosquito salivary glands in a process thought to be mediated by parasite ligands. MAEBL, a homologue of the transmembrane EBP ligands essential in merozoite invasion, is expressed abundantly in midgut sporozoites. Alternative splicing generates different MAEBL isoforms and so it is unclear what form is functionally essential. To identify the MAEBL isoform required for P. falciparum (NF54) sporozoite invasion of salivary glands, we created knockout and allelic replacements each carrying CDS of a single MAEBL isoform. Only the transmembrane form of MAEBL is essential and is the first P. falciparum ligand validated as essential for invasion of Anopheles salivary glands. MAEBL is the first P. falciparum ligand experimentally determined to be essential for this important step in the life cycle where the vector becomes infectious for transmitting sporozoites to people. With an increasing emphasis on advancing vector-based transgenic methods for suppression of malaria, it is important that this type of study, using modern molecular genetic tools, is done with the agent of the human disease. Understanding what P. falciparum sporozoite ligands are critical for mosquito transmission will help validate targets for vector-based transmission-blocking strategies

    Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects.

    Get PDF
    Anti-obesity drugs in the amphetamine (AMPH) class act in the brain to reduce appetite and increase locomotion. They are also characterized by adverse cardiovascular effects with origin that, despite absence of any in vivo evidence, is attributed to a direct sympathomimetic action in the heart. Here, we show that the cardiac side effects of AMPH originate from the brain and can be circumvented by PEGylation (PEGyAMPH) to exclude its central action. PEGyAMPH does not enter the brain and facilitates SNS activity via theβ2-adrenoceptor, protecting mice against obesity by increasing lipolysis and thermogenesis, coupled to higher heat dissipation, which acts as an energy sink to increase energy expenditure without altering food intake or locomotor activity. Thus, we provide proof-of-principle for a novel class of exclusively peripheral anti-obesity sympathofacilitators that are devoid of any cardiovascular and brain-related side effects

    The N-Terminal Domain and Glycosomal Localization of Leishmania Initial Acyltransferase LmDAT Are Important for Lipophosphoglycan Synthesis

    Get PDF
    Ether glycerolipids of Leishmania major are important membrane components as well as building blocks of various virulence factors. In L. major, the first enzyme of the ether glycerolipid biosynthetic pathway, LmDAT, is an unusual, glycosomal dihydroxyacetonephosphate acyltransferase important for parasite's growth and survival during the stationary phase, synthesis of ether lipids, and virulence. The present work extends our knowledge of this important biosynthetic enzyme in parasite biology. Site-directed mutagenesis of LmDAT demonstrated that an active enzyme was critical for normal growth and survival during the stationary phase. Deletion analyses showed that the large N-terminal extension of this initial acyltransferase may be important for its stability or activity. Further, abrogation of the C-terminal glycosomal targeting signal sequence of LmDAT led to extraglycosomal localization, did not impair its enzymatic activity but affected synthesis of the ether glycerolipid-based virulence factor lipophosphoglycan. In addition, expression of this recombinant form of LmDAT in a null mutant of LmDAT did not restore normal growth and survival during the stationary phase. These results emphasize the importance of this enzyme's compartmentalization in the glycosome for the generation of lipophosphoglycan and parasite's biology

    Laboratorial approach in the diagnosis of food allergy

    Get PDF
    OBJCTIVE: Review the available laboratory tests used to assist in the diagnosis of IgE-mediated and non-IgE-mediated food allergy. DATA SOURCES: Papers in English and Portuguese published in PubMed and Embase, in the last ten years. Terms searched were food allergy, diagnose and laboratory, isolated and/or associated. DATA SYNTHESIS: The diagnostic approach to food allergy reactions includes a good medical history, laboratory studies, elimination diets and blinded food challenges. More recently, the use of a quantitative measurement of food-specific IgE antibodies has been shown to be more predictive of symptomatic IgE-mediated food allergy. Food-specific IgE serum levels exceeding the diagnostic values indicate that the patient is greater than 95% likely to experience an allergic reaction if he/she ingests the specific food. Such decision point values have been defined just for some foods and inconsistent results were obtained when allergy to the same food was studied in different centers. Food challenges, in particular the double-blind placebo-controlled food challenge (DBPCFC), represent the most reliable way to establish or rule out food hypersensitivity. CONCLUSIONS: A number of recent developments are improving the predictive value of some laboratory tests for the diagnosis of food allergies. However, to date, no in-vitro or in-vivo test shows full correlation with clinical food allergy and the DBPCFC remains the gold standard for the definitive diagnosis of specific food allergies. There is an urgent need for new and fundamentally improved diagnostic approaches, which must be validated in patients with food allergy confirmed by a positive DBPCFC.OBJETIVO: Revisar os exames laboratoriais disponíveis utilizados no diagnóstico da alergia alimentar mediada ou não por IgE. FONTES DE DADOS: Artigos publicados em base de dados PubMed e Embase (língua inglesa e portuguesa) nos últimos dez anos. As palavras-chave utilizadas como fonte de busca foram alergia alimentar, diagnóstico e laboratório, isolados e/ou associados. SÍNTESE DOS DADOS: A abordagem diagnóstica das reações alérgicas a alimentos inclui história clínica completa, estudos laboratoriais, dietas de eliminação e desencadeamentos cegos com alimentos. Recentemente, a medida quantitativa de anticorpos IgE específicos a alimentos tem mostrado ser mais preditiva de alergia alimentar sintomática mediada por IgE. Níveis séricos de IgE específica a alimento que excedam os valores diagnósticos indicam que o paciente tem chance maior que 95% de apresentar uma reação alérgica se ingerir o alimento em questão. Estes valores de decisão foram definidos para alguns alimentos e resultados inconsistentes são obtidos ao se estudar diferentes populações. Os desencadeamentos com alimento, especialmente o duplo-cego controlado por placebo (DADCCP), representa a maneira mais confiável de estabelecer ou descartar o diagnóstico de hipersensibilidade alimentar. CONCLUSÕES: Número crescente de aquisições tem melhorado o valor preditivo de alguns testes laboratoriais empregados no diagnóstico de alergias alimentares. Entretanto, até hoje, não há teste in vitro ou in vivo que mostre correlação completa com a clínica da alergia alimentar. O DADCCP continua sendo o padrão-ouro no diagnóstico definitivo de alergia alimentar específica. São necessárias, urgentemente, novas abordagens diagnósticas válidadas em pacientes com alergia alimentar confirmada por DADCCP positivo.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de PediatriaUNIFESP-EPM Departamento de PediatriaUniversidade de São Paulo Faculdade de Medicina Departamento de PediatriaUniversidade Federal da Bahia Departamento de PediatriaUNIFESP-EPMUniversidade Federal do Paraná Departamento de PediatriaUNIFESP, EPM, Depto. de PediatriaUNIFESP, EPM Depto. de PediatriaUNIFESP, EPMSciEL
    • …
    corecore