51 research outputs found

    Psychometric properties of the Vertigo symptom scale – Short form

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to examine the psychometric properties of the Vertigo symptom scale – short form (VSS-SF), a condition-specific measure of dizziness, following translation of the scale into Norwegian.</p> <p>Methods</p> <p>A cross-sectional survey design was used to examine the factor structure, internal consistency and discriminative ability (sample I, n = 503). A cross-sectional pre-intervention design was used to examine the construct validity (sample II, n = 36) of the measure and a test-retest design was used to examine reliability (sub-sample of sample II, n = 28).</p> <p>Results</p> <p>The scree plot indicated a two factor structure accounting respectively for 41% and 12% of the variance prior to rotation. The factors were related to vertigo-balance (VSS-V) and autonomic-anxiety (VSS-A). Twelve of the items loaded clearly on either of the two dimensions, while three items cross-loaded. Internal consistency of the VSS-SF was high (alpha = 0.90). Construct validity was indicated by correlation between path length registered by platform posturography and the VSS-V (r = 0.52), but not with the VSS-A. The ability to discriminate between dizzy and not dizzy patients was excellent for the VSS-SF and sub-dimension VSS-V (area under the curve 0.87 and 0.91, respectively), and acceptable for the sub-dimension VSS-A (area under the curve 0.77). High test-retest reliability was demonstrated (ICC VSS-SF: 0.88, VSS-V: 0.90, VSS-A: 0.90) and no systematic change was observed in the scores from test to retest after 2 days.</p> <p>Conclusion</p> <p>Using a Norwegian translated version of the VSS-SF, this is the first study to provide evidence of the construct validity of this instrument demonstrating a stable two factor structure of the scale, and the identified sub-dimensions of dizziness were related to vertigo-balance and autonomic-anxiety, respectively. Evidence regarding a physical construct underlying the vertigo-balance sub-scale was provided. Satisfactory internal consistency was indicated, and the discriminative ability of the instruments was demonstrated. The instrument showed satisfactory test-retest reliability.</p

    Long-term symptoms in dizzy patients examined in a university clinic

    Get PDF
    Background: The long-term course of dizziness was investigated combining medical chart and survey data. The survey was undertaken median (interquartile range (IQR)) 4.6 (4.3) years after the initial medical examination. Methods: Chart data comprised sex, age, diagnosis, symptom duration, postural sway and neck pain. Survey data comprised symptom severity assessed by the Vertigo Symptom Scale – Short Form (VSS-SF), and data regarding current state of dizziness, medication, neck pain and other chronic conditions. Results: The sample consisted of 503 patients, the mean (standard deviation (SD)) age was 50.0 (11.6) years, women being slightly overrepresented (60%). Severe problems with dizziness (VSS-SF mean (SD) 13.9, (10.8)) were indicated in the total group and in 5 of 6 diagnostic sub-groups. Vertigo/balance- and autonomic/anxiety-related symptoms were present in all groups. Current dizziness was confirmed by 73% who had significantly more severe problems than the non-dizzy (VSS-SF mean (SD): 17.2 (10.1) versus 5.0 (7.3)). Symptoms were related to vertigo/balance more than to autonomic/anxiety (test of interaction p < 0.001). Based on simple logistic regression analysis, sex, symptom duration, neck pain, sway and diagnoses predicted dizziness. Symptom duration and neck pain remained predictors in the adjusted analysis. Age, symptom duration, neck pain, sway and diagnoses predicted vertigo/balance-related dizziness in both regression analyses. Sex, neck pain and sway predicted development of autonomic/anxiety-related dizziness according to simple regression analysis, while only neck pain remained a significant predictor in the adjusted analysis. With respect to diagnosis, simple regression analysis showed significant reduced likelihood for development of dizziness in all vestibular sub-groups when compared to the non-otogenic dizziness group. With respect to vertigo/balance- and autonomic/anxiety-related symptoms, the implication of diagnostic belonging varied. No effect of diagnoses was seen in adjusted analyses. Conclusion: The majority of patients had persistent and severe problems with dizziness. The wait-and-see attitude before referral to specialist institutions may be questioned. Early, active movements seem necessary, and attention should be paid to the presence of neck pain. Diagnoses had limited prognostic value. Questionnaire-based evaluations could assist in classification and identification of type of dizziness and thereby provide a better basis for specific rehabilitation

    Protein C Inhibitor—A Novel Antimicrobial Agent

    Get PDF
    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which subsequently leads to their permeabilization. As shown by negative staining electron microscopy, treatment of Escherichia coli or Streptococcus pyogenes bacteria with PCI triggers membrane disruption followed by the efflux of bacterial cytosolic contents and bacterial killing. The antimicrobial activity of PCI is located to the heparin-binding site of the protein and a peptide spanning this region was found to mimic the antimicrobial activity of PCI, without causing lysis or membrane destruction of eukaryotic cells. Finally, we show that platelets can assemble PCI on their surface upon activation. As platelets are recruited to the site of a bacterial infection, these results may explain our finding that PCI levels are increased in tissue biopsies from patients suffering from necrotizing fasciitis caused by S. pyogenes. Taken together, our data describe a new function for PCI in innate immunity

    Reproducibility of postural control measurement during unstable sitting in low back pain patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postural control tests like standing and sitting stabilometry are widely used to evaluate neuromuscular control related to trunk balance in low back pain patients. Chronic low back pain patients have lesser postural control compared to healthy subjects. Few studies have assessed the reproducibility of the centre of pressure deviations and to our knowledge no studies have investigated the reproducibility of three-dimensional kinematics of postural control tests in a low back pain population. Therefore the aim of this study was to assess the test-retest reproducibility of a seated postural control test in low back pain patients.</p> <p>Methods</p> <p>Postural control in low back pain patients was registered by a three dimensional motion analysis system combined with a force plate. Sixteen chronic low back pain patients having complaints for at least six months, were included based on specific clinical criteria. Every subject performed 4 postural control tests. Every test was repeated 4 times and lasted 40 seconds. The force plate registered the deviations of the centre of pressure. A Vicon-612-datastation, equipped with 7 infra-red M1 camera's, was used to track 13 markers attached to the torso and pelvis in order to estimate their angular displacement in the 3 cardinal planes.</p> <p>Results</p> <p>All Intraclass Correlation Coefficients (ICC) calculated for the force plate variables did not exceed 0.73 (ranging between 0.11 and 0.73). As for the torso, ICC's of the mean flexion-extension and rotation angles ranged from 0.65 to 0.93 and of the mean lateral flexion angle from 0.50 to 0.67. For the pelvis the ICC of the mean flexion-extension angle varied between 0.66 and 0.83, the mean lateral flexion angle between 0.16 and 0.81 and the mean rotation angle between 0.40 and 0.62.</p> <p>Consecutive data suggest that the low test-retest reproducibility is probably due to a learning effect.</p> <p>Conclusion</p> <p>The test-retest reproducibility of these postural control tests in an unstable sitting position can globally be considered as rather moderate. In order to improve the test-retest reproducibility, a learning period may be advisable at the beginning of the test.</p

    Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition

    Get PDF
    <div><p>Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.</p></div

    Landmarking the brain for geometric morphometric analysis: An error study

    Get PDF
    Neuroanatomic phenotypes are often assessed using volumetric analysis. Although powerful and versatile, this approach is limited in that it is unable to quantify changes in shape, to describe how regions are interrelated, or to determine whether changes in size are global or local. Statistical shape analysis using coordinate data from biologically relevant landmarks is the preferred method for testing these aspects of phenotype. To date, approximately fifty landmarks have been used to study brain shape. Of the studies that have used landmark-based statistical shape analysis of the brain, most have not published protocols for landmark identification or the results of reliability studies on these landmarks. The primary aims of this study were two-fold: (1) to collaboratively develop detailed data collection protocols for a set of brain landmarks, and (2) to complete an intra- and inter-observer validation study of the set of landmarks. Detailed protocols were developed for 29 cortical and subcortical landmarks using a sample of 10 boys aged 12 years old. Average intra-observer error for the final set of landmarks was 1.9 mm with a range of 0.72 mm-5.6 mm. Average inter-observer error was 1.1 mm with a range of 0.40 mm-3.4 mm. This study successfully establishes landmark protocols with a minimal level of error that can be used by other researchers in the assessment of neuroanatomic phenotypes. © 2014 Chollet et al

    Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with traumatic brain injury (TBI) often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures.</p> <p>Methods</p> <p>Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM) that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI). Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p < 0.05 criterion, corrected for multiple comparisons. False positive rates were verified by comparing the data from each control subject with the data from the remaining control population using identical statistical procedures.</p> <p>Results</p> <p>The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes.</p> <p>Conclusions</p> <p>MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.</p
    • …
    corecore