157 research outputs found

    Heterogeneity in Health Insurance Coverage Among US Latino Adults

    Get PDF
    We sought to determine the differences in observed and unobserved factors affecting rates of health insurance coverage between US Latino adults and US Latino adults of Mexican ancestry. Our hypothesis was that Latinos of Mexican ancestry have worse health insurance coverage than their non-Mexican Latino counterparts. The National Health Interview Survey (NHIS) database from 1999–2007 consists of 33,847 Latinos. We compared Latinos of Mexican ancestry to non-Mexican Latinos in the initial descriptive analysis of health insurance coverage. Disparities in health insurance coverage across Latino categories were later analyzed in a multivariable logistic regression framework, which adjusts for confounding variables. The Blinder-Oaxaca technique was applied to parse out differences in health insurance coverage into observed and unobserved components. US Latinos of Mexican ancestry consistently had lower rates of health insurance coverage than did US non-Mexican Latinos. Approximately 65% of these disparities can be attributed to differences in observed characteristics of the Mexican ancestry population in the US (e.g., age, sex, income, employment status, education, citizenship, language and health condition). The remaining disparities may be attributed to unobserved heterogeneity that may include unobserved employment-related information (e.g., type of employment and firm size) and behavioral and idiosyncratic factors (e.g., risk aversion and cultural differences). This study confirmed that Latinos of Mexican ancestry were less likely to have health insurance than were non-Mexican Latinos. Moreover, while differences in observed socioeconomic and demographic factors accounted for most of these disparities, the share of unobserved heterogeneity accounted for 35% of these differences

    Catecholamine Storage Vesicles: Role of Core Protein Genetic Polymorphisms in Hypertension

    Get PDF
    Hypertension is a complex trait with deranged autonomic control of the circulation. The sympathoadrenal system exerts minute-to-minute control over cardiac output and vascular tone. Catecholamine storage vesicles (or chromaffin granules) of the adrenal medulla contain remarkably high concentrations of chromogranins/secretogranins (or “granins”), catecholamines, neuropeptide Y, adenosine triphosphate (ATP), and Ca2+. Within secretory granules, granins are co-stored with catecholamine neurotransmitters and co-released upon stimulation of the regulated secretory pathway. The principal granin family members, chromogranin A (CHGA), chromogranin B (CHGB), and secretogranin II (SCG2), may have evolved from shared ancestral exons by gene duplication. This article reviews human genetic variation at loci encoding the major granins and probes the effects of such polymorphisms on blood pressure, using twin pairs to probe heritability and individuals with the most extreme blood pressure values in the population to study hypertension

    SCD1 Inhibition Causes Cancer Cell Death by Depleting Mono-Unsaturated Fatty Acids

    Get PDF
    Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway

    Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae

    Get PDF
    Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O2 consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O2 consumption or CO2 production, in the strains used in this study

    Elevated creatine kinase activity in primary hepatocellular carcinoma

    Get PDF
    BACKGROUND: Inconsistent findings have been reported on the occurrence and relevance of creatine kinase (CK) isoenzymes in mammalian liver cells. Part of this confusion might be due to induction of CK expression during metabolic and energetic stress. METHODS: The specific activities and isoenzyme patterns of CK and adenylate kinase (AdK) were analysed in pathological liver tissue of patients undergoing orthotopic liver transplantation. RESULTS: The brain-type, cytosolic BB-CK isoenzyme was detected in all liver specimens analysed. Conversely, CK activity was strongly increased and a mitochondrial CK (Mi-CK) isoenzyme was detected only in tissue samples of two primary hepatocellular carcinomas (HCCs). CONCLUSION: The findings do not support significant expression of CK in normal liver and most liver pathologies. Instead, many of the previous misconceptions in this field can be explained by interference from AdK isoenzymes. Moreover, the data suggest a possible interplay between p53 mutations, HCC, CK expression, and the growth-inhibitory effects of cyclocreatine in HCC. These results, if confirmed, could provide important hints at improved therapies and cures for HCC

    Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae.

    Get PDF
    © 2013 Badaruddin et al.Editor - Peter N. Dodds, Commonwealth Scientific and Industrial Research Organisation (CSIRO), AustraliaThis work was funded by the Biotechnology and Biological Sciences Research Council and a European Research Council Advanced Investigator Award to NJT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae.Biotechnology and Biological Sciences Research Council (BBSRC)European Research Council (ERC

    Phosphorylation of Kif26b Promotes Its Polyubiquitination and Subsequent Proteasomal Degradation during Kidney Development

    Get PDF
    Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development

    Tor1/Sch9-Regulated Carbon Source Substitution Is as Effective as Calorie Restriction in Life Span Extension

    Get PDF
    The effect of calorie restriction (CR) on life span extension, demonstrated in organisms ranging from yeast to mice, may involve the down-regulation of pathways, including Tor, Akt, and Ras. Here, we present data suggesting that yeast Tor1 and Sch9 (a homolog of the mammalian kinases Akt and S6K) is a central component of a network that controls a common set of genes implicated in a metabolic switch from the TCA cycle and respiration to glycolysis and glycerol biosynthesis. During chronological survival, mutants lacking SCH9 depleted extracellular ethanol and reduced stored lipids, but synthesized and released glycerol. Deletion of the glycerol biosynthesis genes GPD1, GPD2, or RHR2, among the most up-regulated in long-lived sch9Δ, tor1Δ, and ras2Δ mutants, was sufficient to reverse chronological life span extension in sch9Δ mutants, suggesting that glycerol production, in addition to the regulation of stress resistance systems, optimizes life span extension. Glycerol, unlike glucose or ethanol, did not adversely affect the life span extension induced by calorie restriction or starvation, suggesting that carbon source substitution may represent an alternative to calorie restriction as a strategy to delay aging

    Androgens and the breast

    Get PDF
    Androgens have important physiological effects in women while at the same time they may be implicated in breast cancer pathologies. However, data on the effects of androgens on mammary epithelial proliferation and/or breast cancer incidence are not in full agreement. We performed a literature review evaluating current clinical, genetic and epidemiological data regarding the role of androgens in mammary growth and neoplasia. Epidemiological studies appear to have significant methodological limitations and thus provide inconclusive results. The study of molecular defects involving androgenic pathways in breast cancer is still in its infancy. Clinical and nonhuman primate studies suggest that androgens inhibit mammary epithelial proliferation and breast growth while conventional estrogen treatment suppresses endogenous androgens. Abundant clinical evidence suggests that androgens normally inhibit mammary epithelial proliferation and breast growth. Suppression of androgens using conventional estrogen treatment may thus enhance estrogenic breast stimulation and possibly breast cancer risk. Addition of testosterone to the usual hormone therapy regimen may diminish the estrogen/progestin increase in breast cancer risk but the impact of this combined use on mammary gland homeostasis still needs evaluation
    corecore