1,897 research outputs found

    A comparison of liquid and solid culture for determining relapse and durable cure in phase III TB trials for new regimens

    Get PDF
    BACKGROUND: Tuberculosis kills more people than any other infectious disease, and new regimens are essential. The primary endpoint for confirmatory phase III trials for new regimens is a composite outcome that includes bacteriological treatment failure and relapse. Culture methodology is critical to the primary trial outcome. Patients in clinical trials can have positive cultures after treatment ends that may not necessarily indicate relapse, which was ascribed previously to laboratory cross-contamination or breakdown of old lesions. Löwenstein-Jensen (LJ) medium was the previous standard in clinical trials, but almost all current and future trials will use the Mycobacteria Growth Indicator Tube (MGIT) system due to its simplicity and consistency of use, which will affect phase III trial results. LJ was used for the definition of the primary endpoint in the REMoxTB trial, but every culture was also inoculated in parallel into the MGIT system. The data from this trial, therefore, provide a unique opportunity to investigate and compare the incidence of false 'isolated positives' in liquid and solid media and their potential impact on the primary efficacy results. METHODS: All post-treatment positive cultures were reviewed in the REMoxTB clinical trial. Logistic regression models were used to model the incidence of isolated positive cultures on MGIT and LJ. RESULTS: A total of 12,209 sputum samples were available from 1652 patients; cultures were more often positive on MGIT than LJ. In 1322 patients with a favourable trial outcome, 126 (9.5%) had cultures that were positive in MGIT compared to 34 (2.6%) patients with positive cultures on LJ. Among patients with a favourable outcome, the incidence of isolated positives on MGIT differed by study laboratory (p < 0.0001) with 21.9% of these coming from one laboratory investigating only 4.9% of patients. No other baseline factors predicted isolated positives on MGIT after adjusting for laboratory. There was evidence of clustering of isolated positive cultures in some patients even after adjusting for laboratory, p < 0.0001. The incidence of isolated positives on MGIT did not differ by treatment arm (p = 0.845, unadjusted). Compared to negative MGIT cultures, positive MGIT cultures were more likely to be associated with higher grade TB symptoms reported within 7 days either side of sputum collection in patients with an unfavourable primary outcome (p < 0.0001) but not in patients with a favourable outcome (p = 0.481). CONCLUSIONS: Laboratory cross-contamination was a likely cause of isolated positive MGIT cultures which were clustered in some laboratories. Certain patients had repeated positive MGIT cultures that did not meet the definition of a relapse. This pattern was too common to be explained by cross-contamination only, suggesting that host factors were also responsible. We conclude that MGIT can replace LJ in phase III TB trials, but there are implications for the definition of the primary outcome and patient management in trials in such settings. Most importantly, the methodologies differ in the incidence of isolated positives and in their capacity for capturing non-tuberculosis mycobacteria. It emphasises the importance of effective medical monitoring after treatment ends and consideration of clinical signs and symptoms for determining treatment failure and relapse

    Symbolic violence and the invisibility of disability

    Get PDF
    Disability as a social justice issue is not part of mainstream talk. Approximately 15% of the world’s population has a disability, and yet persons with disabilities are systematically subjected to this sort of exclusion. If considered in terms of social power, then persons with disabilities are the largest single minority group. Amongst minorities, exclusion from the social and representational order is a forceful form of symbolic violence. Persons with disabilities are systematically subjected to this sort of exclusion. In the public domain, persons with disabilities are either not represented at all, or misrepresented. The misrepresentation of persons with disabilities takes a host of cultural forms. This paper explores a few examples of these forms, as they can be considered examples of symbolic violence. We explore how negative social value may be internalised, and how this constitutes a form of symbolic violence experienced by persons with disabilities. We argue that persons with disabilities must constantly act against subtle and blatant acts of symbolic violence – including exclusion – and that the necessity of constant resistance characterises the lives of disabled persons. We argue that it is necessary not only to recognise the detrimental effects of having to confront the symbolic violence of a society which is structured for the benefit of those with typical embodiment, but also to frame this social injustice as something which leads to very real and very dangerous exclusions

    MDCK Cystogenesis Driven by Cell Stabilization within Computational Analogues

    Get PDF
    The study of epithelial morphogenesis is fundamental to increasing our understanding of organ function and disease. Great progress has been made through study of culture systems such as Madin-Darby canine kidney (MDCK) cells, but many aspects of even simple morphogenesis remain unclear. For example, are specific cell actions tightly coupled to the characteristics of the cell's environment or are they more often cell state dependent? How does the single lumen, single cell layer cyst consistently emerge from a variety of cell actions? To improve insight, we instantiated in silico analogues that used hypothesized cell behavior mechanisms to mimic MDCK cystogenesis. We tested them through in vitro experimentation and quantitative validation. We observed novel growth patterns, including a cell behavior shift that began around day five of growth. We created agent-oriented analogues that used the cellular Potts model along with an Iterative Refinement protocol. Following several refinements, we achieved a degree of validation for two separate mechanisms. Both survived falsification and achieved prespecified measures of similarity to cell culture properties. In silico components and mechanisms mapped to in vitro counterparts. In silico, the axis of cell division significantly affects lumen number without changing cell number or cyst size. Reducing the amount of in silico luminal cell death had limited effect on cystogenesis. Simulations provide an observable theory for cystogenesis based on hypothesized, cell-level operating principles

    Stabilization of Deterministically Chaotic Systems by Interference and Quantum Measurements: The Ikeda Map Case

    Full text link
    We propose a method which can effectively stabilize fixed points in the classical and quantum dynamics of a phase-sensitive chaotic system with feedback. It is based on feeding back a selected quantum sub-ensemble whose phase and amplitude stabilize the otherwise chaotic dynamics. Although the method is rather general, we apply it to realizations of the inherently chaotic Ikeda map. One suggested realization involves the Mach-Zender interferometer with Kerr nonlinearity. Another realization involves a trapped ion interacting with laser fields.Comment: RevTeX, 5 pages, two figure

    A Computational Approach to Understand In Vitro Alveolar Morphogenesis

    Get PDF
    Primary human alveolar type II (AT II) epithelial cells maintained in Matrigel cultures form alveolar-like cysts (ALCs) using a cytogenesis mechanism that is different from that of other studied epithelial cell types: neither proliferation nor death is involved. During ALC formation, AT II cells engage simultaneously in fundamentally different, but not fully characterized activities. Mechanisms enabling these activities and the roles they play during different process stages are virtually unknown. Identifying, characterizing, and understanding the activities and mechanisms are essential to achieving deeper insight into this fundamental feature of morphogenesis. That deeper insight is needed to answer important questions. When and how does an AT cell choose to switch from one activity to another? Why does it choose one action rather than another? We report obtaining plausible answers using a rigorous, multi-attribute modeling and simulation approach that leveraged earlier efforts by using new, agent and object-oriented capabilities. We discovered a set of cell-level operating principles that enabled in silico cells to self-organize and generate systemic cystogenesis phenomena that are quantitatively indistinguishable from those observed in vitro. Success required that the cell components be quasi-autonomous. As simulation time advances, each in silico cell autonomously updates its environment information to reclassify its condition. It then uses the axiomatic operating principles to execute just one action for each possible condition. The quasi-autonomous actions of individual in silico cells were sufficient for developing stable cyst-like structures. The results strengthen in silico to in vitro mappings at three levels: mechanisms, behaviors, and operating principles, thereby achieving a degree of validation and enabling answering the questions posed. We suggest that the in silico operating principles presented may have a biological counterpart and that a semiquantitative mapping exists between in silico causal events and in vitro causal events

    Spot sputum samples are at least as good as early morning samples for identifying Mycobacterium tuberculosis

    Get PDF
    Background The use of early morning sputum samples (EMS) to diagnose tuberculosis (TB) can result in treatment delay given the need for the patient to return to the clinic with the EMS, increasing the chance of patients being lost during their diagnostic workup. However, there is little evidence to support the superiority of EMS over spot sputum samples. In this new analysis of the REMoxTB study, we compare the diagnostic accuracy of EMS with spot samples for identifying Mycobacterium tuberculosis pre- and post-treatment. Methods Patients who were smear positive at screening were enrolled into the study. Paired sputum samples (one EMS and one spot) were collected at each trial visit pre- and post-treatment. Microscopy and culture on solid LJ and liquid MGIT media were performed on all samples; those missing corresponding paired results were excluded from the analyses. Results Data from 1115 pre- and 2995 post-treatment paired samples from 1931 patients enrolled in the REMoxTB study were analysed. Patients were recruited from South Africa (47%), East Africa (21%), India (20%), Asia (11%), and North America (1%); 70% were male, median age 31 years (IQR 24–41), 139 (7%) co-infected with HIV with a median CD4 cell count of 399 cells/μL (IQR 318–535). Pre-treatment spot samples had a higher yield of positive Ziehl–Neelsen smears (98% vs. 97%, P = 0.02) and LJ cultures (87% vs. 82%, P = 0.006) than EMS, but there was no difference for positivity by MGIT (93% vs. 95%, P = 0.18). Contaminated and false-positive MGIT were found more often with EMS rather than spot samples. Surprisingly, pre-treatment EMS had a higher smear grading and shorter time-to-positivity, by 1 day, than spot samples in MGIT culture (4.5 vs. 5.5 days, P < 0.001). There were no differences in time to positivity in pre-treatment LJ culture, or in post-treatment MGIT or LJ cultures. Comparing EMS and spot samples in those with unfavourable outcomes, there were no differences in smear or culture results, and positive results were not detected earlier in Kaplan–Meier analyses in either EMS or spot samples. Conclusions Our data do not support the hypothesis that EMS samples are superior to spot sputum samples in a clinical trial of patients with smear positive pulmonary TB. Observed small differences in mycobacterial burden are of uncertain significance and EMS samples do not detect post-treatment positives any sooner than spot samples

    Cross reactive cellular immune responses in chickens previously exposed to low pathogenic avian influenza

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian influenza (AI) infection in poultry can result in high morbidity and mortality, and negatively affect international trade. Because most AI vaccines used for poultry are inactivated, our knowledge of immunity against AI is based largely on humoral immune responses. In fact, little is known about cellular immunity following a primary AI infection in poultry, especially regarding cytotoxic T lymphocytes (CTL’s).</p> <p>Methods</p> <p>In these studies, major histocompatibility complex (MHC)-defined (B<sup>2</sup>/B<sup>2</sup>) chickens were infected with low pathogenic AI (LPAI) H9N2 and clinical signs of disease were monitored over a two weeks period. Splenic lymphocytes from infected and naïve birds were examined for cross reactivity against homologous and heterologous (H7N2) LPAI by ex vivo stimulation. Cellular immunity was determined by cytotoxic lysis of B<sup>2</sup>/B<sup>2</sup> infected lung target cells and proliferation of T cells following exposure to LPAI.</p> <p>Results</p> <p>Infection with H9N2 resulted in statistically significant weight loss compared to sham-infected birds. Splenic lymphocytes derived from H9N2-infected birds displayed lysis of both homologous (H9N2) and heterologous (H7N2) infected target cells, whereas lymphocytes obtained from sham-infected birds did not. T cell proliferation was determined to be highest when exposed to the homologous virus.</p> <p>Conclusions</p> <p>Taken together these data extend the findings that cellular immunity, including CTL’s, is cross reactive against heterologous isolates of AI and contribute to protection following infection.</p

    Social research on neglected diseases of poverty: Continuing and emerging themes

    Get PDF
    Copyright: © 2009 Manderson et al.Neglected tropical diseases (NTDs) exist and persist for social and economic reasons that enable the vectors and pathogens to take advantage of changes in the behavioral and physical environment. Persistent poverty at household, community, and national levels, and inequalities within and between sectors, contribute to the perpetuation and re-emergence of NTDs. Changes in production and habitat affect the physical environment, so that agricultural development, mining and forestry, rapid industrialization, and urbanization all result in changes in human uses of the environment, exposure to vectors, and vulnerability to infection. Concurrently, political instability and lack of resources limit the capacity of governments to manage environments, control disease transmission, and ensure an effective health system. Social, cultural, economic, and political factors interact and influence government capacity and individual willingness to reduce the risks of infection and transmission, and to recognize and treat disease. Understanding the dynamic interaction of diverse factors in varying contexts is a complex task, yet critical for successful health promotion, disease prevention, and disease control. Many of the research techniques and tools needed for this purpose are available in the applied social sciences. In this article we use this term broadly, and so include behavioral, population and economic social sciences, social and cultural epidemiology, and the multiple disciplines of public health, health services, and health policy and planning. These latter fields, informed by foundational social science theory and methods, include health promotion, health communication, and heath education
    corecore