174 research outputs found

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Tracing ancestry with methylation patterns: most crypts appear distantly related in normal adult human colon

    Get PDF
    BACKGROUND: The ability to discern ancestral relationships between individual human colon crypts is limited. Widely separated crypts likely trace their common ancestors to a time around birth, but closely spaced adult crypts may share more recent common ancestors if they frequently divide by fission to form clonal patches. Alternatively, adult crypts may be long-lived structures that infrequently divide or die. METHODS: Methylation patterns (the 5' to 3' order of methylation) at CpG sites that exhibit random changes with aging were measured from isolated crypts by bisulfite genomic sequencing. This epigenetic drift may be used to infer ancestry because recently related crypts should have similar methylation patterns. RESULTS: Methylation patterns were different between widely separated ("unrelated") crypts greater than 15 cm apart. Evidence for a more recent relationship between directly adjacent or branched crypts could not be found because their methylation pattern distances were not significantly different than widely separated crypt pairs. Methylation patterns are essentially equally different between two adult human crypts regardless of their relative locations. CONCLUSIONS: Methylation patterns appear to record somatic cell trees. Starting from a single cell at conception, sequences replicate and may drift apart. Most adult human colon crypts appear to be long-lived structures that become mosaic with respect to methylation during aging

    Using an Uncertainty-Coding Matrix in Bayesian Regression Models for Haplotype-Specific Risk Detection in Family Association Studies

    Get PDF
    Haplotype association studies based on family genotype data can provide more biological information than single marker association studies. Difficulties arise, however, in the inference of haplotype phase determination and in haplotype transmission/non-transmission status. Incorporation of the uncertainty associated with haplotype inference into regression models requires special care. This task can get even more complicated when the genetic region contains a large number of haplotypes. To avoid the curse of dimensionality, we employ a clustering algorithm based on the evolutionary relationship among haplotypes and retain for regression analysis only the ancestral core haplotypes identified by it. To integrate the three sources of variation, phase ambiguity, transmission status and ancestral uncertainty, we propose an uncertainty-coding matrix which combines these three types of variability simultaneously. Next we evaluate haplotype risk with the use of such a matrix in a Bayesian conditional logistic regression model. Simulation studies and one application, a schizophrenia multiplex family study, are presented and the results are compared with those from other family based analysis tools such as FBAT. Our proposed method (Bayesian regression using uncertainty-coding matrix, BRUCM) is shown to perform better and the implementation in R is freely available

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Optimizing Dietary Restriction for Genetic Epistasis Analysis and Gene Discovery in C. elegans

    Get PDF
    Dietary restriction (DR) increases mammalian lifespan and decreases susceptibility to many age-related diseases. Lifespan extension due to DR is conserved across a wide range of species. Recent research has focused upon genetically tractable model organisms such as C. elegans to uncover the genetic mechanisms that regulate the response to DR, in the hope that this information will provide insight into the mammalian response and yield potential therapeutic targets. However, no consensus exists as to the best protocol to apply DR to C. elegans and potential key regulators of DR are protocol-specific. Here we define a DR method that better fulfills criteria required for an invertebrate DR protocol to mirror mammalian studies. The food intake that maximizes longevity varies for different genotypes and informative epistasis analysis with another intervention is only achievable at this β€˜optimal DR’ level. Importantly therefore, the degree of restriction imposed using our method can easily be adjusted to determine the genotype-specific optimum DR level. We used this protocol to test two previously identified master regulators of DR in the worm. In contrast to previous reports, we find that DR can robustly extend the lifespan of worms lacking the AMP-activated protein kinase catalytic subunit AAK2 or the histone deacetylase SIR-2.1, highlighting the importance of first optimizing DR to identify universal regulators of DR mediated longevity

    Are recovery stories helpful for women with eating disorders? A pilot study and commentary on future research

    Get PDF
    Background: Anecdotally it is well known that eating disorder memoirs are popular with people with anorexia nervosa and recovery stories are readily available online. However, no research to date has empirically explored whether such stories are helpful for current sufferers. The aim of the current pilot study was to explore the efficacy of recovery narratives as a means of improving motivation and self-efficacy and to qualitatively explore patient perspectives of such stories. Method: Fifty-seven women with anorexia nervosa and subclinical anorexia nervosa participated in this online study. Participants were randomised to either receive recovery stories or to a wait-list control group. After completing baseline measures, participants read five stories about recovery, and completed post-intervention measures two weeks later. Results: The quantitative results indicated that reading stories of recovery had no effect on motivation and self-efficacy over a two-week period. In contrast, the qualitative results showed that the stories generated thoughts about the possibility of recovery and the majority indicated they would recommend them to others. Conclusions: This study adds to a growing body of research exploring the integration of voices of lived experience into treatment approaches. Future research should focus on 1) identifying for whom and at which stage of illness recovery stories might be helpful; 2) the mechanism via which they might operate; and 3) the most helpful way of presenting such stories

    Potential impact of invasive alien species on ecosystem services provided by a tropical forested ecosystem: a case study from Montserrat

    Get PDF
    Local stakeholders at the important but vulnerable Centre Hills on Montserrat consider that the continued presence of feral livestock (particularly goats and pigs) may lead to widespread replacement of the reserve’s native vegetation by invasive alien trees (Java plum and guava), and consequent negative impacts on native animal species. Since 2009, a hunting programme to control the feral livestock has been in operation. However long-term funding is not assured. Here, we estimate the effect of feral livestock control on ecosystem services provided by the forest to evaluate whether the biodiversity conservation rationale for continuation of the control programme is supported by an economic case. A new practical tool (Toolkit for Ecosystem Service Site-based Assessment) was employed to measure and compare ecosystem service provision between two states of the reserve (i.e. presence and absence of feral livestock control) to estimate the net consequences of the hunting programme on ecosystem services provided by the forest. Based on this we estimate that cessation of feral livestock management would substantially reduce the net benefits provided by the site, including a 46 % reduction in nature-based tourism (from 419,000to419,000 to 228,000) and 36 % reduction in harvested wild meat (from 205,000to205,000 to 132,000). The overall net benefit generated from annual ecosystem service flows associated with livestock control in thereserve, minus the management cost, was $214,000 per year. We conclude that continued feral livestock control is important for maintaining the current level of ecosystem services provided by the reserve

    Prevention of Wear Particle-Induced Osteolysis by a Novel V-ATPase Inhibitor Saliphenylhalamide through Inhibition of Osteoclast Bone Resorption

    Get PDF
    Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-ΞΊB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis
    • …
    corecore