3,665 research outputs found

    Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity

    Get PDF
    In general, in thermoelectric materials the electrical conductivity sigma and thermal conductivity kappa are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between sigma and kappa as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between sigma and kappa. In other words, as the thickness of SnS2 decreased, sigma increased whereas kappa decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor similar to 1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7mVK(-1) for 16-nm-thick samples at 300 K.114330Ysciescopu

    Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection.

    Get PDF
    Ebolaviruses pose significant public health problems due to their high lethality, unpredictable emergence, and localization to the poorest areas of the world. In addition to implementation of standard public health control procedures, a number of experimental human vaccines are being explored as a further means for outbreak control. Recombinant cytomegalovirus (CMV)-based vectors are a novel vaccine platform that have been shown to induce substantial levels of durable, but primarily T-cell-biased responses against the encoded heterologous target antigen. Herein, we demonstrate the ability of rhesus CMV (RhCMV) expressing Ebola virus (EBOV) glycoprotein (GP) to provide protective immunity to rhesus macaques against lethal EBOV challenge. Surprisingly, vaccination was associated with high levels of GP-specific antibodies, but with no detectable GP-directed cellular immunity

    Recent Progress in Phage Therapy to Modulate Multidrug-Resistant Acinetobacter baumannii, Including in Human and Poultry

    Get PDF
    Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the etiopathology of both an increasing number of nosocomial infections and is of relevance to poultry production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to severe challenges to clinical treatment, mostly due to an increased rate of resistance to carbapenems. Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage therapy has gained particular importance for the treatment of bacterial infections. This review summarizes the different phage-therapy approaches currently in use for multiple-drug resistant Acinetobacter baumannii, including single phage therapy, phage cocktails, phage–antibiotic combination therapy, phage-derived enzymes active on Acinetobacter baumannii and some novel technologies based on phage interventions. Although phage therapy represents a potential treatment solution for multidrug-resistant Acinetobacter baumannii, further research is needed to unravel some unanswered questions, especially in regard to its in vivo applications, before possible routine clinical use

    Characterization of Protective Human CD4+CD25+ FOXP3+ Regulatory T Cells Generated with IL-2, TGF-β and Retinoic Acid

    Get PDF
    BACKGROUND: Protective CD4+CD25+ regulatory T cells bearing the Forkhead Foxp3 transcription factor can now be divided into three subsets: Endogenous thymus-derived cells, those induced in the periphery, and another subset induced ex-vivo with pharmacological amounts of IL-2 and TGF-β. Unfortunately, endogenous CD4+CD25+ regulatory T cells are unstable and can be converted to effector cells by pro-inflammatory cytokines. Although protective Foxp3+CD4+CD25+ cells resistant to proinflammatory cytokines have been generated in mice, in humans this result has been elusive. Our objective, therefore, was to induce human naïve CD4+ cells to become stable, functional CD25+ Foxp3+ regulatory cells that were also resistant to the inhibitory effects of proinflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS: The addition of the vitamin A metabolite, all-trans retinoic acid (atRA) to human naïve CD4+ cells suboptimally activated with IL-2 and TGF-β enhanced and stabilized FOXP3 expression, and accelerated their maturation to protective regulatory T cells. AtRA, by itself, accelerated conversion of naïve to mature cells but did not induce FOXP3 or suppressive activity. The combination of atRA and TGF-β enabled CD4+CD45RA+ cells to express a phenotype and trafficking receptors similar to natural Tregs. AtRA/TGF-β-induced CD4+ regs were anergic and low producers of IL-2. They had potent in vitro suppressive activity and protected immunodeficient mice from a human-anti-mouse GVHD as well as expanded endogenous Tregs. However, treatment of endogenous Tregs with IL-1β and IL-6 decreased FOXP3 expression and diminished their protective effects in vivo while atRA-induced iTregs were resistant to these inhibitory effects. CONCLUSIONS/SIGNIFICANCE: We have developed a methodology that induces human CD4(+) cells to rapidly become stable, fully functional suppressor cells that are also resistant to proinflammatory cytokines. This methodology offers a practical novel strategy to treat human autoimmune diseases and prevent allograft rejection without the use of agents that kill cells or interfere with signaling pathways

    Clinical assessment of a low-cost, hand-held, smartphone-attached intraoral imaging probe for ALA PDT monitoring and guidance

    Get PDF
    India has one of the highest rates of oral squamous cell carcinoma (OSCC) in the world, with an incidence of 15 per 100,000 and more than 70,000 deaths per year. The problem is exacerbated by lack of medical infrastructure and routine screening, especially in rural areas. This collaboration recently developed, and clinically validated, a low-cost, portable and easy-to-use platform for intraoral photodynamic therapy (PDT) specifically engineered for use in global health settings. Here, we explore the implementation of our low-cost PDT system in conjunction with a small, handheld smartphone-coupled, multichannel fluorescence and white-light oral cancer imaging probe, which was also developed for global health settings. Our study aimed to use this mobile intraoral imaging device for treatment guidance and monitoring PDT using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PS; PpIX) fluorescence. A total of 12 patients with 14 lesions having moderately/well-differentiated micro-invasive OSCC lesions (<2 cm diameter, depth <5 mm) were systemically administered with three doses of 20mg/kg ALA (total 60mg/kg). Lesion site PpIX and auto fluorescence was analyzed before/after ALA administration, and again after light delivery (fractionated, total 100 J/cm^{2} of 630nm red LED light). Quantification of relative PpIX fluorescence enables lesion area segmentation to improve guidance of light delivery and reports extent of photobleaching. These results indicate the utility of this approach for image-guided PDT and treatment monitoring while also laying groundwork for an integrated approach, combining cancer screening and treatment with the same hardware

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Synthesis and antibacterial activity against ralstonia solanacearum for novel hydrazone derivatives containing a pyridine moiety

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ralstonia solanacearum</it>, one of the most important bacterial diseases on plants, is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. In order to discover new bioactive molecules and pesticides acting on tobacco bacterial wilt, we sought to combine the active structure of hydrazone and pyridine together to design and synthesize a series of novel hydrazone derivatives containing a pyridine moiety.</p> <p>Results</p> <p>A series of hydrazone derivatives containing a pyridine moiety were synthesized. Their structures were characterized by <sup>1 </sup>H-NMR, <sup>13 </sup>C-NMR, IR, and elemental analysis. The preliminary biological activity tests showed that compound 3e and 3g exhibited more than 80% activity against <it>Ralstonia solanacearum </it>at 500 mg/L, especially compound 3g displayed relatively good activity to reach 57.0% at 200 mg/L.</p> <p>Conclusion</p> <p>A practical synthetic route to hydrazone derivatives containing a pyridine moiety by the reaction of intermediates 2 with different aldehydes in ethanol at room temperature using 2-chloronicotinic acid and 2-amino-5-chloro-3-methylbenzoic acid as start materials is presented. This study suggests that the hydrazone derivatives containing a substituted pyridine ring could inhibit the growth of <it>Ralstonia solanacearum</it>.</p

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Variation in 5-hydroxymethylcytosine across human cortex and cerebellum

    Get PDF
    Background: The most widely utilized approaches for quantifying DNA methylation involve the treatment of genomic DNA with sodium bisulfite; however, this method cannot distinguish between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Previous studies have shown that 5hmC is enriched in the brain, although little is known about its genomic distribution and how it differs between anatomical regions and individuals. In this study, we combine oxidative bisulfite (oxBS) treatment with the Illumina Infinium 450K BeadArray to quantify genome-wide patterns of 5hmC in two distinct anatomical regions of the brain from multiple individuals. Results: We identify 37,145 and 65,563 sites passing our threshold for detectable 5hmC in the prefrontal cortex and cerebellum respectively, with 23,445 loci common across both brain regions. Distinct patterns of 5hmC are identified in each brain region, with notable differences in the genomic location of the most hydroxymethylated loci between these brain regions. Tissue-specific patterns of 5hmC are subsequently confirmed in an independent set of prefrontal cortex and cerebellum samples. Conclusions: This study represents the first systematic analysis of 5hmC in the human brain, identifying tissue-specific hydroxymethylated positions and genomic regions characterized by inter-individual variation in DNA hydroxymethylation. This study demonstrates the utility of combining oxBS-treatment with the Illumina 450k methylation array to systematically quantify 5hmC across the genome and the potential utility of this approach for epigenomic studies of brain disorders

    Oxaliplatin induces drug resistance more rapidly than cisplatin in H69 small cell lung cancer cells

    Get PDF
    Cisplatin produces good responses in solid tumours including small cell lung cancer (SCLC) but this is limited by the development of resistance. Oxaliplatin is reported to show activity against some cisplatin-resistant cancers but there is little known about oxaliplatin in SCLC and there are no reports of oxaliplatin resistant SCLC cell lines. Studies of drug resistance mainly focus on the cellular resistance mechanisms rather than how the cells develop resistance. This study examines the development of cisplatin and oxaliplatin resistance in H69 human SCLC cells in response to repeated treatment with clinically relevant doses of cisplatin or oxaliplatin for either 4 days or 2h. Treatments with 200ng/ml cisplatin or 400ng/ml oxaliplatin for 4 days produced sublines (H69CIS200 and H69OX400 respectively) that showed low level (approximately 2-fold) resistance after 8 treatments. Treatments with 1000ng/ml cisplatin or 2000ng/ml oxaliplatin for 2h also produced sublines, however these were not stably resistant suggesting shorter treatment pulses of drug may be more effective. Cells survived the first five treatments without any increase in resistance, by arresting their growth for a period and then regrowing. The period of growth arrest was reduced after the sixth treatment and the H69CIS200 and H69OX400 sublines showed a reduced growth arrest in response to cisplatin and oxaliplatin treatment suggesting that "regrowth resistance" initially protected against drug treatment and this was further upregulated and became part of the resistance phenotype of these sublines. Oxaliplatin dose escalation produced more surviving sublines than cisplatin dose escalation but neither set of sublines were associated with increased resistance as determined by 5-day cytotoxicity assays, also suggesting the involvement of regrowth resistance. The resistant sublines showed no change in platinum accumulation or glutathione levels even though the H69OX400 subline was more sensitive to buthionine sulfoximine treatment. The H69CIS200 cells were cross-resistant to oxaliplatin demonstrating that oxaliplatin does not have activity against low level cisplatin resistance. Relative to the H69 cells, the H69CIS200 and H69OX400 sublines were more sensitive to paclitaxel and taxotere suggests the taxanes may be useful in the treatment of platinum resistant SCLC. These novel cellular models of cisplatin and oxaliplatin resistant SCLC will be useful in developing strategies to treat platinum-resistant SCLC
    corecore