2,731 research outputs found
A Pichia pastoris VPS15 homologue is required in selective peroxisome autophagy
Methylotrophic yeasts contain large peroxisomes during growth on methanol. Upon exposure to excess glucose or ethanol these organelles are selectively degraded by autophagy, Here we describe the cloning of a Pichia pastoris gene (PpVPS15) involved ill peroxisome degradation, which is homologous to Saccharomyces cerevisiae VPS15. In methanol-grown cells of a P. pastoris VPS15 deletion strain, the levels of peroxisomal marker enzymes remained high after addition of excess glucose or ethanol. Electron microscopic studies revealed that the organelles were not taken up by vacuoles, suggesting that PpVPS15 is required at an early stage in peroxisome degradation
Recommended from our members
Strong correlations and orbital texture in single-layer 1T-TaSe2
Strong electron correlation can induce Mott insulating behaviour and produce intriguing states of matter such as unconventional superconductivity and quantum spin liquids. Recent advances in van der Waals material synthesis enable the exploration of Mott systems in the two-dimensional limit. Here we report characterization of the local electronic properties of single- and few-layer 1T-TaSe2 via spatial- and momentum-resolved spectroscopy involving scanning tunnelling microscopy and angle-resolved photoemission. Our results indicate that electron correlation induces a robust Mott insulator state in single-layer 1T-TaSe2 that is accompanied by unusual orbital texture. Interlayer coupling weakens the insulating phase, as shown by reduction of the energy gap and quenching of the correlation-driven orbital texture in bilayer and trilayer 1T-TaSe2. This establishes single-layer 1T-TaSe2 as a useful platform for investigating strong correlation physics in two dimensions
Non-malleable encryption: simpler, shorter, stronger
In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit
The polyAT, intronic IVS11-6 and Lys939Gln XPC polymorphisms are not associated with transitional cell carcinoma of the bladder
Chemical carcinogens from cigarette smoking and occupational exposure are risk factors for bladder transitional cell carcinoma (TCC). The Xeroderma Pigmentosum Group C (XPC) gene is essential for repair of bulky adducts from carcinogens. The Xeroderma Pigmentosum Group C gene polymorphisms may alter DNA repair capacity (DRC), thus giving rise to genetic predisposition to bladder cancer. Recent studies have demonstrated linkage disequilibrium between three polymorphisms in the XPC gene (polyAT, IVS11-6 and Lys939Gln) and these have been shown to influence the DRC, as well as to be associated with bladder cancer risk. We analysed all three XPC polymorphisms in 547 bladder TCC patients and 579 cancer-free controls to investigate the association between these polymorphisms and bladder cancer susceptibility, and we also attempted to assess gene–environmental interactions. We confirmed strong linkage disequilibrium among the polymorphisms (Lewontin's D′>0.99). Using logistic regression adjusting for smoking, occupational and family history, neither the heterozygote nor the homozygote variants of these polymorphisms were associated with increased bladder cancer risk (adjusted odds ratio [95% confidence interval] for heterozygote 0.82 [0.63–1.07], 0.82 [0.63–1.08] and 0.83 [0.63–1.08] for PolyAT, IVS11-6 and Lys939Gln, respectively and homozygote variant, 0.98 [0.68–1.42], 0.99 [0.69–1.43] and 1.01 [0.70–1.46]). Moreover, we did not find any significant interaction between these XPC polymorphisms and environmental exposure to cigarette smoking and occupational carcinogens
Wall roughness induces asymptotic ultimate turbulence
Turbulence is omnipresent in Nature and technology, governing the transport
of heat, mass, and momentum on multiple scales. For real-world applications of
wall-bounded turbulence, the underlying surfaces are virtually always rough;
yet characterizing and understanding the effects of wall roughness for
turbulence remains a challenge, especially for rotating and thermally driven
turbulence. By combining extensive experiments and numerical simulations, here,
taking as example the paradigmatic Taylor-Couette system (the closed flow
between two independently rotating coaxial cylinders), we show how wall
roughness greatly enhances the overall transport properties and the
corresponding scaling exponents. If only one of the walls is rough, we reveal
that the bulk velocity is slaved to the rough side, due to the much stronger
coupling to that wall by the detaching flow structures. If both walls are
rough, the viscosity dependence is thoroughly eliminated in the boundary layers
and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of
transport, whose existence had been predicted by Robert Kraichnan in 1962
(Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be
extrapolated to arbitrarily large Reynolds numbers
Giant Faraday rotation in single- and multilayer graphene
Optical Faraday rotation is one of the most direct and practically important
manifestations of magnetically broken time-reversal symmetry. The rotation
angle is proportional to the distance traveled by the light, and up to now
sizeable effects were observed only in macroscopically thick samples and in
two-dimensional electron gases with effective thicknesses of several
nanometers. Here we demonstrate that a single atomic layer of carbon - graphene
- turns the polarization by several degrees in modest magnetic fields. The
rotation is found to be strongly enhanced by resonances originating from the
cyclotron effect in the classical regime and the inter-Landau-level transitions
in the quantum regime. Combined with the possibility of ambipolar doping, this
opens pathways to use graphene in fast tunable ultrathin infrared
magneto-optical devices
Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)
We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe
Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission
High- cuprate superconductors are characterized by a strong
momentum-dependent anisotropy between the low energy excitations along the
Brillouin zone diagonal (nodal direction) and those along the Brillouin zone
face (antinodal direction). Most obvious is the d-wave superconducting gap,
with the largest magnitude found in the antinodal direction and no gap in the
nodal direction. Additionally, while antinodal quasiparticle excitations appear
only below , superconductivity is thought to be indifferent to nodal
excitations as they are regarded robust and insensitive to . Here we
reveal an unexpected tie between nodal quasiparticles and superconductivity
using high resolution time- and angle-resolved photoemission on optimally doped
BiSrCaCuO. We observe a suppression of the nodal
quasiparticle spectral weight following pump laser excitation and measure its
recovery dynamics. This suppression is dramatically enhanced in the
superconducting state. These results reduce the nodal-antinodal dichotomy and
challenge the conventional view of nodal excitation neutrality in
superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
- …