4 research outputs found

    Reversible Disruption of Pre-Pulse Inhibition in Hypomorphic-Inducible and Reversible CB1-/- Mice

    Get PDF
    Although several genes are implicated in the pathogenesis of schizophrenia, in animal models for such a severe mental illness only some aspects of the pathology can be represented (endophenotypes). Genetically modified mice are currently being used to obtain or characterize such endophenotypes. Since its cloning and characterization CB1 receptor has increasingly become of significant physiological, pharmacological and clinical interest. Recently, its involvement in schizophrenia has been reported. Among the different approaches employed, gene targeting permits to study the multiple roles of the endocannabinoid system using knockout (-/-) mice represent a powerful model but with some limitations due to compensation. To overcome such a limitation, we have generated an inducible and reversible tet-off dependent tissue-specific CB1-/- mice where the CB1R is re-expressed exclusively in the forebrain at a hypomorphic level due to a mutation (IRh-CB1-/-) only in absence of doxycycline (Dox). In such mice, under Dox+ or vehicle, as well as in wild-type (WT) and CB1-/-, two endophenotypes motor activity (increased in animal models of schizophrenia) and pre-pulse inhibition (PPI) of startle reflex (disrupted in schizophrenia) were analyzed. Both CB1-/- and IRh-CB1-/- showed increased motor activity when compared to WT animals. The PPI response, unaltered in WT and CB1-/- animals, was on the contrary highly and significantly disrupted only in Dox+ IRh-CB1-/- mice. Such a response was easily reverted after either withdrawal from Dox or haloperidol treatment. This is the first Inducible and Reversible CB1-/- mice model to be described in the literature. It is noteworthy that the PPI disruption is not present either in classical full CB1-/- mice or following acute administration of rimonabant. Such a hypomorphic model may provide a new tool for additional in vivo and in vitro studies of the physiological and pathological roles of cannabinoid system in schizophrenia and in other psychiatric disorders

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) Study Rationale, Design, and Baseline Characteristics

    No full text
    Background: People with diabetes and kidney disease have a high risk of cardiovascular events and progression of kidney disease. Sodium glucose co-transporter 2 inhibitors lower plasma glucose by reducing the uptake of filtered glucose in the kidney tubule, leading to increased urinary glucose excretion. They have been repeatedly shown to induce modest natriuresis and reduce HbA1c, blood pressure, weight, and albuminuria in patients with type 2 diabetes. However, the effects of these agents on kidney and cardiovascular events have not been extensively studied in patients with type 2 diabetes and established kidney disease. Methods: The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial aims to compare the efficacy and safety of canagliflozin ­versus placebo at preventing clinically important kidney and cardiovascular outcomes in patients with diabetes and established kidney disease. CREDENCE is a randomized, double-blind, event-driven, placebo-controlled trial set in in 34 countries with a projected duration of â\u88¼5.5 years and enrolling 4,401 adults with type 2 diabetes, estimated glomerular filtration rate â\u89¥30 to 300 to â\u89¤5,000 mg/g). The study has 90% power to detect a 20% reduction in the risk of the primary outcome (α = 0.05), the composite of end-stage kidney disease, doubling of serum creatinine, and renal or cardiovascular death. Conclusion: CREDENCE will provide definitive evidence about the effects of canagliflozin on renal (and cardiovascular) outcomes in patients with type 2 diabetes and established kidney disease. Trial Registration: EudraCT number: 2013-004494-28; ClinicalTrials.gov identifier: NCT02065791
    corecore