31 research outputs found

    Competition and Combative Advertising: An Historical Analysis

    Get PDF
    Fred K. Beard (PhD, University of Oklahoma) is a professor of advertising in the Gaylord College of Journalism and Mass Communication, University of Oklahoma. His research interests include comparative advertising, advertising humor, and advertising history. His work has appeared in the Journal of Advertising, the Journal of Advertising Research, the Journal of Business Ethics, the Journal of Business Research, Journalism History, the Journal of Historical Research in Marketing, the Journal of Macromarketing, and the Journal of Marketing Communications, among others.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Effects of substance P on medial vestibular nucleus neurons in guinea-pig brainstem slices

    No full text
    The undecapeptide substance P (SP) has been recently implicated in the control of vestibular function. In particular, it seems to be co-localized with glutamate in approximately half of the primary vestibular afferents in mammals. Using intracellular recordings in guinea-pig brainstem slices, we have investigated the effects of SP and of several agonists of the three known tachykinin receptor subtypes (NK1, NK2 and NK3) on the three main types (A, B and B+LTS) of guinea-pig medial vestibular nucleus neurons (MVNn) that we had previously described. SP could induce two distinct kinds of effects on all types of MVNn. Whereas around half of them were depolarized and had their membrane resistance increased by SP, approximately 10% of all MVNn were in contrast hyperpolarized and inhibited while their membrane resistance was decreased. Both responses persisted under conditions of blockade of synaptic transmission, and were thus due to the activation of postsynaptic binding sites. The SP-induced membrane depolarization could not be reproduced with any one of the specific agonists of the three tachykinin receptor subtypes, nor was it blocked by the specific NK1 receptor antagonists GR 82664 and CP 99994. This effect might therefore be due to the activation of a new, pharmacologically distinct, 'NK1-like' receptor. Only the hyperpolarizing effects, which were in contrast mimicked by the specific NK1 receptor agonists GR 73632 and [Sar9, Met (O2)11]-SP, would be mediated by the few typical NK1 receptors which have been demonstrated in the medial vestibular nucleus

    Function and Emotion in Everyday Life With Type 1 Diabetes (FEEL-T1D): Protocol for a Fully Remote Intensive Longitudinal Study

    No full text
    BackgroundAlthough short-term blood glucose levels and variability are thought to underlie diminished function and emotional well-being in people with type 1 diabetes (T1D), these relationships are poorly understood. The Function and Emotion in Everyday Life with T1D (FEEL-T1D) study focuses on investigating these short-term dynamic relationships among blood glucose levels, functional ability, and emotional well-being in adults with T1D. ObjectiveThe aim of this study is to present the FEEL-T1D study design, methods, and study progress to date, including adaptations necessitated by the COVID-19 pandemic to implement the study fully remotely. MethodsThe FEEL-T1D study will recruit 200 adults with T1D in the age range of 18-75 years. Data collection includes a comprehensive survey battery, along with 14 days of intensive longitudinal data using blinded continuous glucose monitoring, ecological momentary assessments, ambulatory cognitive tasks, and accelerometers. All study procedures are conducted remotely by mailing the study equipment and by using videoconferencing for study visits. ResultsThe study received institutional review board approval in January 2019 and was funded in April 2019. Data collection began in June 2020 and is projected to end in December 2021. As of June 2021, after 12 months of recruitment, 124 participants have enrolled in the FEEL-T1D study. Approximately 87.6% (7082/8087) of ecological momentary assessment surveys have been completed with minimal missing data, and 82.0% (82/100) of the participants provided concurrent continuous glucose monitoring data, ecological momentary assessment data, and accelerometer data for at least 10 of the 14 days of data collection. ConclusionsThus far, our reconfiguration of the FEEL-T1D protocol to be implemented remotely during the COVID-19 pandemic has been a success. The FEEL-T1D study will elucidate the dynamic relationships among blood glucose levels, emotional well-being, cognitive function, and participation in daily activities. In doing so, it will pave the way for innovative just-in-time interventions and produce actionable insights to facilitate tailoring of diabetes treatments to optimize the function and well-being of individuals with T1D. International Registered Report Identifier (IRRID)DERR1-10.2196/3090
    corecore