6 research outputs found

    Rapid activation and down-regulation of protein kinase C alpha in 12-O-tetradecanoylphorbol-13-acetate -induced differentiation of human rhabdomyosarcoma cells

    Get PDF
    Human rhabdomyosarcoma RD cells express the myogenic regulatory factors MyoD and myogenin but differentiate spontaneously very poorly. Prolonged treatment of RD cells with the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate (TPA) induces growth arrest and myogenic differentiation as shown by the accumulation of alpha-actin and myosin light and heavy chains, without affecting the expression of MyoD and myogenin. In this study, we show that short-term phorbol ester treatment of the cultures is sufficient to trigger myogenic differentiation but not growth arrest. Furthermore, PKC inhibitors, such as staurosporine or calphostin C, prevent TPA-induced differentiation but not cell growth arrest. These data suggest that the two events are mediated by different pathways; a possible interpretation is that the activation of one or more PKC isoforms mediates the induction of differentiation, whereas the down-regulation of the same or different isoforms mediates the growth arrest. To address the mechanism whereby TPA affects cell growth and differentiation in RD cells, we first analyzed PKC isoenzyme distribution. We found that RD cells express the alpha, beta 1, gamma, and sigma PKC isoenzymes. Only the alpha isoform is exclusively found in the soluble fraction, but it translocates to the membrane fraction within 5 min of TPA treatment and is completely down-regulated after 6 h. The other isoenzymes are found associated to both the soluble and the particulate fractions and are down-regulated after long-term TPA treatment. By immunofluorescence analysis, we show that the PKC alpha down-regulation is specific for those cells that respond to TPA by activating the muscle phenotype. We propose that TPA-induced differentiation in RD cells is mediated by the transient activation of PKC alpha, which activates some of the intracellular events that are necessary for MyoD and myogenin transacting activity and for the induction of terminal differentiation of RD cells. By contrast, the constitutively active beta 1 and sigma are responsible for the maintenance of cell growth, and their down-regulation is responsible for long-term TPA-induced cell growth arrest

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Acetylcholine stimulates phosphatidylinositol turnover at nicotinic receptors of cultured myotubes

    Get PDF
    Acetylcholine treatment of [3H]inositol pre-labelled cultured chick embryo myotubes results in the stimulation of phosphatidylinositol breakdown, as shown by the measurement of inositol-1-phosphate accumulating in the presence of lithium. The described effect is dependent on agonist concentration and incubation time, and is inhibited by tubocurarine and α-bungarotoxin. The activation of phosphatidylinositol breakdown by acetylcholine at extrajunctional nicotinic receptors is likely to be involved in the modulation of the functional activity of the receptor. © 1985

    A muscle cell line from dystrophic mice expressing an altered phenotype in vitro

    No full text
    The isolation and characterization of a myogenic cell line from C57BL/6J/dydy mice is described. This line (DyA4) maintains the morphological, biochemical and electrophysiological characteristics of the primary cultured cells, at least for 20 passages. The cells actively divide as long as they are subcultured in media supplemented with horse serum and embryo extract. If the cells are not subcultured for a few days, they fuse into multinucleated contracting myotubes, which readily synthesize specific muscle products such as acetylcholinesterase and acetylcholine receptor. This dystrophic cell line expresses in vitro the same altered phenotype that is characteristic of dystrophic muscle cells in primary cultures, namely reduced acetylcholine sensitivity and reduced acetylcholine receptor expression. Because they can be grown in large amounts, and represent a pure muscle cell population which express an altered phenotype in an in vitro aneural avascular environment, DyA4 cells provide a very useful model system for investigating the pathogenesis of murine muscular dystrophy

    Protein kinase C theta co-operates with calcineurin in the activation of slow muscle genes in cultured myogenic cells

    No full text
    Adult skeletal muscle fibers can be divided into fast and Slow twitch subtypes on the basis of specific contractile and metabolic properties, and on distinctive patterns of muscle gene expression. The calcium, calmodulin-dependent protein phosphatase, calcineurin, stimulates slow fiber-specific genes (myoglobin (Mb), troponin I Slow) in Cultured skeletal muscle cells, as well as in transgenic mice, through the co-operation of peroxisome-proliferation-activator receptor gamma co-activator 1 alpha (PGC1 alpha) myocyte enhancer factor 2 (MEF2), and nuclear factor of activated T cells (NFAT) transcription factors. Specific protein kinase C isoforms have been shown to functionally co-operate with calcineurin in different cellular models. We investigated whether specific protein kinase C isoforms are involved in calcineurin-induced slow skeletal muscle gene expression. By pharmacological inhibition or exogenous expression Of mutant forms, we show that protein kinase C theta (the protein kinase C isoform predominantly expressed in skeletal muscle) is required and co-operates with calcineurin in the activation of the Mb promoter, as well as in the induction of slow isoforms of myosin and troponin I expression, in cultured muscle cells. This co-operation acts primarily regulating MEF2 activity, as shown by using reporter gene expression driven by the Mb promoter Mutated in the specific binding sites. MEF2 activity on the Mb promoter is known to be dependent on both PGC1 alpha and inactivation of histone deacetylases (HDACs) activity. We show in this study that protein kinase C theta is required for, even though it does not co-operate in, PGC1 alpha-dependent Mb activation. Importantly, protein kinase C theta regulates the HDAC5 nucleus/cytoplasm location. We conclude that protein kinase C theta ensures maximal activation of MEF2, by regulating both MEF2 transcriptional complex formation and HDACs nuclear export
    corecore