595 research outputs found

    Three dimensional (3D) microstructure-based modeling of interfacial decohesion in particle reinforced metal matrix composites

    Get PDF
    Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results

    Real-space analysis of branch point motion in architecturally complex polymers

    Get PDF
    By means of large-scale molecular dynamics simulations, we investigate branch point motion in pure branched polymers and in mixtures of stars and linear chains. We perform a purely geometrical density-based cluster analysis of the branch point trajectories and identify regions of strong localization (traps). Our results demonstrate that the branch point motion can be described as the motion over a network of traps at the time scales corresponding to the reptation regime. Residence times within the traps are broadly distributed, even extending to times much longer than the side-arm relaxation time. The distributions of distances between consecutively visited traps are very similar for all the investigated branched polymers, even though tube dilation is much stronger in the star/linear mixtures than in the pure branched systems. Our analysis suggests that the diffusivity of the branch point introduced by hierarchical models must be understood as a parameter to account for the effective friction associated with the relaxed side arm, more than the description of a hopping process with a precise time scale.We acknowledge support from projects FP7-PEOPLE-2007-1-1-ITN (DYNACOP, EU), MAT2012-31088 (Spain), and IT654-13 (GV, Spain). We acknowledge the programs PRACE, HPC-Europa2 and ESMI (EU), and ICTS (Spain) for generous allocation of CPU time at GENCI (France), HLRS and FZJ-JSC (Germany), and CESGA (Spain).Peer Reviewe
    corecore