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A B S T R A C T 

Modeling and prediction of the overall elastic-plastic response and local damage mechanisms in 
heterogeneous materials, in particular particle reinforced composites, is a very complex problem. 
Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular 
morphology of the particles, and anisotropy in particle orientation after secondary processing, such as 
extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix 
interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure 
consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC 
particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from 
serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone 
elements. 

Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: 
(a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized 
debonding takes place. The angular particles exhibited higher degree of load transfer and are more 
sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, 
because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of 
particle morphology may lead to erroneous results. 

1. Introduction 

The design and development of high performance materials 
requires a thorough understanding and careful control of micro-
structure and its effect on properties. This is particularly challen­
ging given the multiphase and heterogeneous nature of most high 
performance composites. Modeling and prediction of the overall 
elastic-plastic response and local damage mechanisms in hetero­
geneous materials, in particular particle reinforced composites, is 
a very complex problem. 

In multiphase materials, numerical modeling techniques, such as 
finite element method (FEM), are often more effective than analytical 
modeling since these materials lack the structural simplicity of 
continuous fiber composites or laminates and hence are not readily 
amenable to closed-form theoretical analyses. Another advantage of 
numerical modeling is that deformation and damage characteristics, 
particularly on a local scale, can be revealed. Numerical modeling of 
the behavior of multiphase materials has typically been conducted by 

assuming a single fiber, whisker, or particle of simple geometry in a 
unit cell model [1-3]. Unit cell models have been employed to model 
fracture of the ceramic reinforcement [4-7], void nucleation, growth 
and coalescence of voids within the metallic matrix [8], and/or 
decohesion and crack growth along the particle/matrix interface [9]. 

Another important aspect of the microstructure in the compo­
site is the effect of spatial distribution of the particles. The link 
between spatial distribution and mechanical behavior has not 
been modeled extensively. Ghosh and co-workers [10,11] used a 
serial sectioning technique to obtain the spatial distribution of the 
SiC particles, and quantified the spatial distribution by a tessella­
tion scheme. Modeling of damage in the composite was con­
ducted on 2D sections by approximating the particle morphology 
as ellipsoids, so the deformation assumed a two-dimensional 
stress state (plane stress, plane strain, or modified plane strain). 
A 3D elastic Voronoi cell is also being developed [12], once again 
using ellipsoid particles. Boselli et al. [13] modeled the effect of 
crack growth using idealized 2D microstructures, consisting of 
circular disks embedded in a metal matrix. It was found that 
clustering had a significant effect on the local shielding and "anti-
shielding" effects at the crack tip. Llorca and co-workers [14] 
recently modeled the effect of particle clustering on damage in 



MMCs in 3D. The particles, modeled as spheres, were incorpo­
rated with different degrees of clustering (as quantified by a 
radial distribution function). Moreover, they included the effect of 
damage by interface decohesion or matrix failure by void growth 
and coalescence into the simulations [15-17]. It was found that 
while the average stress in the particles did not vary significantly 
with clustering, the standard deviation in stress did. Thus, it was 
shown that for a given far-field applied stress in highly clustered 
composites, a given particle locally may have a much higher 
stress deviation from the average stress, and, thus, be more prone 
to fracture. In addition, tensile hydrostatic stresses were higher in 
the highly clustered regions of the microstructure, leading to 
early nucleation of damage by interface decohesion and acceler­
ated void growth in the matrix. 

The survey of the modeling approaches and results in the 
literature indicate that while conventional numerical modeling is 
reasonable for modeling simple shapes, such as cylindrical fibers, 
the unit cell models approximate the highly variable and irregular 
angular structure of particles by using simplified particle geome­
tries such as spheres, ellipsoids, or cubes. Thus, while simplifica­
tions in unit cell models may aid in computation, they fail to 
capture the complex morphology, size, and spatial distribution of 
the reinforcement. It follows that an accurate simulation of the 
material behavior can really only be obtained by incorporating 
actual 3D microstructures as a basis for the model. Chawla and 
co-workers [18-20] have developed and employed microstruc-
ture-based finite element techniques that are able to incorporate 
the "true" composite microstructures. These models consider the 
inherent particle morphology and clustering of particles, as a 
basis for analysis using finite element techniques, with minimal 
approximations. 

Our initial work in this area concentrated on simple linear elastic 
analysis of two-dimensional (2D) microstructures [18]. Here, micro-
structural images from optical and/or scanning electron microscopy 
were segmented, and transformed into a vectorial format, for finite 
element analysis. More recently, the microstructure-based approach 
has included elastic-plastic analysis, whereby the microstructure 
is exported to a commercial finite element analysis software. 
Currently, models have been used to conduct 3D microstructure 
simulations, by obtaining 2D images from serial sectioning or 
X-ray tomography, reconstruction of the 3D virtual microstructure, 
and incorporation of the 3D model into a FEM analysis [21]. In this 
manner, prediction of the macroscopic stress-strain behavior, as 
well as insight into the localized nature of deformation, can be 
obtained. It should be noted that other techniques, such as X-ray 
tomography [22-25] and holotomography [26], simulated micro-
structures [27-29], and multiphase elements [30] have also been 
incorporated into FEM analysis. Nevertheless, microstructure-based 
FEM have not incorporated the actual failure mechanisms observed 
in these materials (such as interface decohesion). 

Microstructural complexities such as the inhomogeneous spatial 
distribution of particles, irregular morphology of the particles, and 
anisotropy in particle orientation after secondary processing, such as 
extrusion, significantly affect deformation behavior. Accurate pre­
diction of macroscopic deformation behavior and an understanding 
of localized damage mechanisms can be accomplished by capturing 
the microstructure of the material as a basis for the model [31]. 
In this paper we examined the role of particle/matrix interfacial 
decohesion using actual microstructures, obtained from a 3D serial 
sectioning approach. Simplified models, consisting of perfect ellip­
soids and spheres (while maintaining the distribution of the 
particles constant) were also employed. It will be shown that 3D 
microstructure-based modeling approaches provide a quantitative 
understanding of localized damage phenomena (which are not 
predicted in simplified models), as well as excellent corroboration 
of experimental observations. 

2. Materials and experimental procedure 

A 2080 aluminum alloy (3.6% Cu, 1.9% Mg, and 0.25% Zr) 
reinforced with 10, 20, and 30vol% SiC particles (with an average 
particle size of 8 am) was used in this study. The materials were 
processed by the powder metallurgy technique (Alcoa Inc, Alcoa, PA). 
The matrix powder and reinforcement particles were blended, and 
the powder mixture canned and degassed to remove adsorbed water 
and/or other volatile elements. The material was then vacuum hot 
pressed and hot extruded [32]. The composites were electro-dis­
charge machined (EDM) into rectangular blanks, solution treated at 
493 °C for 2 h, water quenched, and peak-aged at 175 °C for 24 h 
(T6 condition). 

Specimens were machined parallel to the extrusion axis. The 
following steps were used for the serial sectioning process and 3D 
visualization and modeling. The composite samples were cut and 
mounted. The first step was to choose a representative region of the 
microstructure. Selection of this region of interest is very important, 
but somewhat subjective. It is desirable to obtain a number of 
sections that encompass several SiC particles in a given volume, to 
allow entire particles to be reconstructed and incorporated in 
modeling. This volume is also dependent on the feature size (e.g., 
particle size). A volume of 100 x 100 x 20 am3 yields approximately 
100 particles, assuming that the SiC particles are approximately ~ 6-
8 am in diameter, with a volume fraction of 20% SiC. This volume 
served as a starting point for determining a "representative" number 
of particles for the FEM simulated response. The effect of micro-
structure volume on predicted deformation response of the compo­
sites was confirmed, to ensure that the volume being modeled was 
representative of the deformation behavior of the material. This was 
done by incrementally increasing the model size until the predicted 
response did not change. 

Fig. 1. 3D models of SiC particle reinforced Al (a) actual microstructure, (b) ellipsoid particles, and (c) spherical particles. 



Fiducial marks, made by Vickers indentation, were used to 
measure the material thickness loss during polishing/grinding. 
Since the geometry of the indenter is known, the amount of 
material thickness removed can be calculated. The average 
cumulative thickness loss rate was taken as the average of 
indentations at the four corners of the square region of interest. 
This rate was calibrated to give a thickness loss of about 
1 um/cycle. Since the size of the microstructural features dictates 
the thickness between sections, with SiC particles about 8 am in 
diameter, this would yield at least 5-6 sections per particle. 

Cyclic polishing and imaging of the sample surface were 
then conducted to generate a series of microstructural sections. 
The role of polishing in serial sectioning is very important, for 
two reasons: (a) to control the amount of material removed, and 
(b) to obtain a high quality surface finish for microstructural 
characterization. In order to obtain the desired 1 um/cycle target, 
the composite was polished with 1 am diamond paste for 20 min 
while applying a load of 5 N. After each polishing cycle, images 
of the microstructure were taken with an optical microscope. 
The sample was secured using a mounting fixture to minimize 
translational and rotational misalignments between sections. 
The microstructures were segmented into black and white 
images using a conventional image analysis software (ImageJ, 
Bethesda, MD). 

The segmented microstructures were stacked and the 3D 
morphology of the particles was reconstructed using a vectoral 
format software (SurfDriver, University of Alberta & University 
of Hawaii). The 3D particles were simplified slightly during 
reconstruction to aid in computation, although the simplifications 
did not significantly change the original morphology of the SiC 
particles. 

3. Results and discussion 

The finite element method (FEM) has been used to simulate 
the mechanical behavior of the materials under tensile loading. 
Fig. 1 shows two 3D models of the microstructure of extruded SiC 
particle reinforced Al alloy matrix composite. Fig. 1(a) shows the 
actual geometry of the SiC particles, while Fig. 1(b) shows the 
particles approximated as ellipsoidal particles. The tensile 
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Fig. 4. Comparison of stress-strain response in the elastic region for a model with 
cohesive zone elements and a perfect interface. Prior to debonding the model 
response is the same. 

Fig. 2. Meshed 3D models of SiC particle reinforced Al (a) ellipsoid particles and (b) actual microstructure. 
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Fig. 3. (a) Cohesive zone elements used to model interface debonding in SiC particle reinforced Al alloy composites, (b) Cohesive traction law in terms of normal stress 
versus crack opening displacement. 



behavior of the two models was simulated using FEM. The refined 
3D virtual model was exported into a pre-processor finite element 
meshing program (Hypermesh, Altair Engineering, Troy, MI) and 
then into an implicit commercial finite element analysis program 
(ABAQUS standard, Pawtucket, RI). 

Rectangular prisms of dimensions II x 12 x 13 were used as 
representative volume element, size that embeds approximately 
100 particles. The model volume (matrix and reinforcing particles) 
was meshed using modified 10-node tetrahedral (C3D10M in 
Abaqus) using an adaptive automatic meshing algorithm. A cut of 
the final mesh together with the definition of the reference system 
is plotted in Fig. 2, being the direction 1 the loading axis. The 
modified elements contain an extra internal degree of freedom, and 
provide higher accuracy to reproduce the strain gradient in the 
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Fig. 5. Comparison of stress-strain response for (a) ellipsoidal particles and 
(b) angular particles. The effect of debonding is much more pronounced in the 
actual microstructure. 

matrix between closely-packed particles. Moreover, special care was 
taken to ensure that the matrix discretization between particles 
contained at least two element layers. A typical model comprised 
approximately 100,000-150,000 elements. 

The particle behavior was assumed to be elastic with elastic 
modulus £ s=410 GPa and Poisson's ratio vs=0.20. The matrix was 
modeled as an isotropically hardening elastic-plastic solid fol­
lowing the incremental (J2) theory of plasticity. The matrix elastic 
constants were £m = 74GPa and vm=0.30, and the isotropic 
matrix hardening during plastic deformation was given by the 
expression: 

where a^ is the Von Mises equivalent stress and ep
m stands for the 

accumulated plastic strain. The constants A=400 MPa and n=0.15 
are typical of an Al alloy. 

In order to account for the damage due to particle decohesion, 
a cohesive crack model was introduced in the interfaces between 
particles and matrix [15,17]. The cohesive model enters into the 
simulation by interface elements of zero thickness connecting 
matrix and particle faces. Although cohesive interface elements 
are included in ABAQUS since version 6.5, none of the elements 
present in the program library is fully compatible with the 
elements of particles and matrix (C3D10M) and the user interface 
element developed by Segurado and LLorca [33] has been used for 
this purpose. The interface element consists of a double 6-noded 
triangular element with initial zero thickness (geometry depicted 
on Fig. 3(a)) where the normal and tangential stresses transferred 
by the interface were derived from a potential <P given by: 

<P(Au„, Aiitf, Au t2) = Auc all )dl 

where Aun, Aun and Aut2 stand for the normal and tangential 
relative displacements between the crack faces, and Auc is the 
critical normal (or tangential) displacement between the crack 
faces at which all interactions vanish. 1 is the generalized crack 
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Fig. 6. Comparison of stresses in angular and ellipsoidal composites with (a) perfect interface and (b) debonding interface. The angular particles exhibited higher stress 
due to more load transfer, and relaxation after debonding. The macroscopic applied strain is 1.9%. 



opening displacement expressed as 

(AUn 
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The particular function a{X) (which stands for the normal 
stress transferred through the crack in the absence of tangential 
displacements) chosen for this simulation consists on a linear 
softening curve and is plotted in Fig. 3(b). The interface behavior 
is totally defined then by the two physical independent para­
meters: the interface strength, ta and the fracture energy, Fi} 

which is the area enclosed under the a{X) function: 

ri = -tcAuc 

In addition, a numerical parameter defining the initial stiffness 
Kt has to be introduced and adjusted to ensure that the presence 
of the interface elements does not perturb the stress fields around 
the spherical particles in the absence of damage. 

The initial stiffness value has been set to 5 x 105 N/m2, which 
in the absence of damage provides a macroscopic response almost 
identical to the same model without cohesive interfaces (Fig. 4) 
and does not affect the convergence of the problem too much . 
The critical displacement, Auc, used for all simulations was 1 am 
and the interface strength was set to different values 300 MPa, 
500 MPa, 3000 MPa, and a perfect interface (infinite strength). 
The boundary conditions applied to the RVEs in order to simulate 
uniaxial tension are defined in the reference system of Fig. 6. The 
load is applied by imposing a displacement e ^ , to each node on 
the face Xi =Li, being £i the value of the applied strain. All nodes 
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Fig. 7. Comparison of local stresses in matrix of angular and ellipsoidal composites with (a) perfect interface and (b) debonding interface. The angular particles exhibited 
higher stress due to more load transfer, and relaxation after debonding. The macroscopic applied strain is 1.9%. 

Perfect 
Interfaces 

Debonding 
Interfaces 

Loading axis -* 

Fig. 8. Comparison of local stresses in matrix of angular and ellipsoidal composites with (a) perfect interface and (b) debonding interface. In the actual microstructure, 
plasticity shifts from the matrix-rich regions (for perfect interface) to the particle/matrix interface (after debonding). The macroscopic applied strain is 1.9%. 



on the face x 1 = 0 were pinned at zero displacement in all the 
three directions. 

The effect of interface strength, using cohesive zone elements, for 
both angular and ellipsoid particles is shown in Fig. 5. The following 
interface strengths were employed, 300 MPa, 500 MPa, 3000 MPa, 
and a perfect interface (infinite strength). In the actual microstruc-
ture, the decrease in composite strength is quite significant. In the 
ellipsoid case only a small change is observed, which occurs at the 
lowest interface strength of 300 MPa. The mechanisms by which this 
dramatic change takes place can be described as follows. We can first 
examine the degree of load transfer for both types of particles. The 
angular particles provide more flat surfaces for load transfer, and 
thus, these particles are more conducive to carrying load transferred 
from the matrix. Sharp stresses at particle corners are also observed, 
which dramatically increase the triaxial stress in the matrix. Note 
that with debonding the stress of the particles decreases signifi­
cantly. This is shown in two ways. Fig. 6 shows a 3D view of just the 
SiC particles, in both perfectly bonded and debonded cases. Fig. 7 
shows the particles and matrix, but in a 2D section of the composite, 
again, for perfectly bonded and debonded cases. It is interesting to 
note that in the angular particles, the surfaces that are normal to the 
loading axis carry load. Thus, when debonding takes place, these 
surfaces are relieved of the stress and relaxation takes place. Such a 
transition during debonding is not observed in the ellipsoidal 
particles, because of the smooth overall shape and absences of flat 
surfaces. This explains the lack of sensitivity to debonding observed 
in the ellipsoidal particle reinforced composites. 

The location of highest strain localization and plasticity also is 
different for perfect bonding and debonded cases in the compo­
site with angular particles. In the perfectly bonded case plasticity 
is highest in the matrix-rich regions of the composite (Fig. 8). 
After debonding, the strain intensification is right at the particle/ 
matrix interface. The differences in ellipsoidal particle composite 
are not as pronounced. 

4. Summary 

We have studied the effect of particle/matrix interface 
debonding in SiC particle reinforced Al alloy matrix composites 
with (a) actual microstructure consisting of angular SiC particles 
and (b) idealized ellipsoidal SiC particles. Tensile deformation in 
SiC particle reinforced Al matrix composites was modeled using 
actual microstructures reconstructed from serial sectioning 
approach. Interfacial debonding was modeled using user-defined 
cohesive zone elements. 

Modeling with the actual microstructure (versus idealized 
ellipsoids) has a significant influence on: (a) localized stresses 
and strains in particle and matrix, and (b) far-field strain at which 
localized debonding takes place. The angular particles exhibited 
higher degree of load transfer and are more sensitive to interfacial 
debonding. Larger decreases in stress are observed in the angular 
particles, because of the flat surfaces, normal to the loading axis, 
which bear load. Furthermore, simplification of particle morphol­
ogy may lead to erroneous results. 
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