
Real-Space Analysis of Branchpoint Motion in

Architecturally Complex Polymers
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Abstract

By means of large-scale molecular dynamics simulations, weinvestigate branchpoint mo-

tion in pure branched polymers and in mixtures of stars and linear chains. We perform a purely

geometrical density-based cluster analysis of the branchpoint trajectories and identify regions

of strong localization (traps). Our results demonstrate that the branchpoint motion can be

described as the motion over a network of traps at the time scales corresponding to the repta-

tion regime. Residence times within the traps are broadly distributed, even extending to times

much longer than the side arm relaxation time. The distributions of distances between consec-

utively visited traps are very similar for all the investigated branched polymers, even though
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tube dilation is much stronger in the star/linear mixtures than in the pure branched systems.

Our analysis suggests that the diffusivity of the branchpoint introduced by hierarchical models

must be understood as a parameter to account for the effective friction associated to the relaxed

side arm, more than the description of a hopping process witha precise time scale.
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1 Introduction

The celebrated tube model for relaxation of entangled linear polymers1,2 has been modified in re-

cent years to describe the slow relaxation processes occuring in architecturally complex, branched

polymers.3–6 The presence of even a single branchpoint in the macromolecular architecture dra-

matically slows down the overall relaxation of the material. Because of the ubiquity of branch-

points in industrial polymers, the development of predictive tube models for the rheological prop-

erties of these materials has become a challenging field in both fundamental and applied polymer

science.3,7

Different versions of hierarchical tube models have been introduced to account for the com-

plex relaxation of entangled branched polymers.5,6,8 These models postulate new mechanisms for

relaxation of the intramolecular degrees of freedom. The polymer arms relax by deep contour

length fluctuations (arm retraction9) from the outer segments to the branchpoint. This mechanism

leads to an exponential distribution of relaxation times along the arm countour. As a consequence,

the inner segments close to the branchpoint do not experience entanglements with the outer ones,

which have relaxed at much earlier time scales. This constraint-release mechanism is known as

dynamic tube dilution (DTD),9–11 and leads to an effectively time-dependent, wider tube for the

inner segments. After full relaxation of the arm, the branchpoint probes the space liberated by

the removed constraints, and consequently it is assumed to perform diffusive steps (hops).5,12 In

asymmetric structures (e.g., T- and Y-stars, combs...), the main backbone is not yet relaxed at the

time scale of relaxation of the side arms. Then branchpoint longitudinal diffusion proceeds along

the backbone tube, the relaxed side arms act as effective ‘frictional beads’, and stress relaxation is

completed by reptation of the backbone.13–15

Though the former qualitative picture has gained general acceptance, the specific details of the

proposed mechanisms are controversial. It is commonly believed that inconsistencies originate

from an inaccurate description of the relaxation in the neighborhood of the branchpoint. For in-

stance, in order to reproduce experimental rheological data, different versions of hierarchical tube

models need to make different assumptions on the direction and length scale for branchpoint mo-
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tion, this occurring in the original undilated or in the dilated tube.16 Solving this controversy is

a challenging problem, since direct experimental access tothe branchpoint motion is hard to be

achieved, and reported data are still scarce.17 In a pioneer work, Zhou and Larson12 bridged the

gap between theory and experiment by performing molecular dynamics simulations of entangled

T-star polymers. Visual inspection of the branchpoint trajectories revealed rather distinct features

from inner segment motion in entangled linear chains. Whereas the central part of the linear chain

formed a diffuse trajectory along the confined tube, the trajectories of the branchpoints in asymmet-

ric stars exhibited localization regions. This feature wasrecognized as a signature of the hopping

mechanism postulated by tube models. However, a detailed quantitative characterization of the

branchpoint trajectories was missing.

In this article we shed light on the former questions. We extend results of Ref.12 to other

branched architectures than T-star polymers, as well as to star/linear mixtures, and explore much

longer time scales (two decades more). By performing a, purely geometrical, density-based clus-

ter analysis of the branchpoint trajectories, we identify regions of strong localization (‘traps’) and

provide evidence of branchpoint hopping. We find that this isnot characterized by well-defined

single time and length scales, which indeed exhibit broad distributions. Still, the cluster analysis

allows us to compute the typical distance between consecutively visited traps directly from the

simulation data. The obtained distance between traps is later compared to the diameter of the dy-

namically dilated tube, which is also obtained from the simulation data in a model-independent

fashion.18,19 The analysis reveals the presence of strongly localized branchpoints at times much

longer than the arm relaxation time, even in the case of very weakly entangled side arms. The dis-

tributions of distances between consecutively visited traps are very similar for all the investigated

branched polymers, even though tube dilation is much stronger in the star/linear mixtures than in

the pure branched systems. We discuss the consequences of our analysis on the interpretation of

the branchpoint diffusivity introduced by tube models.

The article is organized as follows. In Section 2 we summarize the model and simulation de-

tails, that are exhaustively described in Refs.18,19The density-based cluster analysis of the branch-
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Figure 1: Scheme of the simulated systems:Ns represents the number of branched polymers and
Nc the number of linear chains in the simulation box.N is the number of beads per macromolecule.
The red numbers placed at each branch and backbone denote their lengths (Z) expressed in multi-
ples of the entanglement lengthNe = 25. Blue numbers express the composition of the mixtures,
i.e. the ratio of the number of beads belonging to the asymmetric 883-stars to the total number of
beads of the linear chains. In the text we refer to each particular system by its big black label.

point trajectories is presented in Section 3. Results from the analysis are presented in Section 4

and discussed in Section 5. Conclusions are given in Section6.

2 Model and simulation details

We have performed large-scale molecular dynamics simulations of melts of architecturally com-

plex polymers. These include T-shaped and Y-shaped asymmetric stars, H-polymers, two-arm

combs and Cayley trees. In the case of the Cayley trees we analyze the motion of the threeouter

branchpoints. All the asymmetric branched polymers consist of a main backbone ofZ = 16 en-

tanglements. The three long arms of the Cayley trees haveZ = 8 entanglements. In all cases the

short arms are weakly entangled (Z = 1-3 entanglements). We have also simulated two mixtures

(50%-50% and 67%-33% in monomer fraction) of T-stars with weakly entangled linear chains, as

well as a system of pure linear chains ofZ = 16. These are treated as two-arm stars, where the

middle monomer is the ‘branchpoint’. Details about the investigated systems are summarized in
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Figure 1, including the number of entanglements in the arms and the backbone portions, and the

number of polymers in the simulation box. The polymers are modelled by using the Kremer-Grest

bead-spring model.20 The monomeric units are represented as beads of massm0 interacting with

a purely repulsive, cut-off Lennard-Jones (LJ) potential that accounts for the monomer excluded

volume interaction:

ULJ(r) =
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Connectivity between beads is provided by an elastic FENE potential:20
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, (2)

with spring constantKF = 30ε/σ2 and maximum spring lengthRF = 1.5σ . The combination of

Eq. (1) and Eq. (2) strongly limits the vibration of the bond connecting two beads, preventing chain

crossability.20 A bending potential given by

Ubend(θ) = kθ (1−cosθ) , (3)

and with moderate strength (kθ = 2ε) is introduced to implement a slight degree of intramolec-

ular stiffness. In the former equation,θ stands for the bending angle between three consecutive

monomers. With this choice of the force field the entanglement length,Ne≈ 25 beads,21 is consid-

erably reduced respect to the case of fully flexible chains,22 allowing us to simulate more strongly

entangled systems with the same box size. Simulations were performed at temperatureT = ε/kB

(with kB the Boltzmann constant) and number densityρ = 0.85σ−3 by using the free package

ESPResSo.23 The temperature was maintained constant by applying a Langevin thermostat with

a friction constantΓ = 0.5m0/τ0. The equations of motion were integrated by the velocity-Verlet

algorithm with a time step∆t = 0.01τ0. The simulations typically extended over a few billion
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time steps. A detailed description of the model and the equilibration and simulation procedure is

given in Refs.18 and.19 In the following, times and distances will be given in the LJ-units of the

model,18–20 i.e.,σ andτ0 = (m0σ2/ε)1/2 for the distance and time, respectively.

3 Density-based cluster analysis

First we examine heterogeneous dynamics and deviations from Gaussian behavior of the branch-

point motion. The main panels of Figure 2 show the normalizedvan Hove self-correlation function,

4πr2Gs(r, t), of the branchpoint at two fixed times, namelyt = 2×107 (close to the end of the sim-

ulation) andt = 2×106, in top and bottom panels, respectively. The inset in the toppanel shows

the time-dependence of the non-Gaussian parameter,α2(t) = 3〈∆r4(t)〉/5〈∆r2(t)〉2−1 (this be-

comes zero in the limit of Gaussian behavior), where∆r(t) is the displacement of the branchpoint

at timet. To improve statistics, the former functions have been averaged over the branchpoint and

the three nearest monomers in each of the arms stemming from the branchpoint. Though, within

statistics, the non-Gaussian parameter seems to increase at timest > 103, this remains well below

unity at the end of the simulation time window. This finding israther different from the behavior

α2(t) > 1 observed in strongly heterogeneous dynamic regimes, as e.g., the decaging regime in

the vicinity of a glass transition.24 The low values found for the non-Gaussian parameter of the

branchpoints are consistent with the smooth shape of the vanHove functions, which do not exhibit

neither secondary peaks nor long tails. These are also absent at the other simulation time scales

not shown in Figure 2.

The former features suggest that there is not a well-defined,single length and/or time scale for

branchpoint hopping (which otherwise would lead to a secondary peak in the van Hove function).

Still, visual inspection of typical branchpoint trajectories gives evidence of strong localization of

the branchpoint in certain regions of the space (‘traps’). The left frame (grey points) of Figure 3

shows a representative ‘smoothed’ trajectory of the branchpoint in the H-polymer. Smoothed tra-

jectories are obtained as follows. In all the simulated systems the branchpoints are regularly saved
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Figure 2: Normalized van Hove self-correlations functionsfor the branchpoints in the investigated
systems, at timet = 2×107 close to the end of the simulation (top) and at timet =2×106 (bottom).
Inset in top panel: time-dependence of the non-Gaussian parameter of the branchpoints. Data sets
for a same system are plotted with identical colors in the main panels and inset (see legend).

at every time interval of∆t = 200. Then each consecutive block of 10 positions is replacedby

its averaged positionrav. The latter represents the average over a time interval∆t = 2000, which

corresponds approximately to the entanglement time (τe = 1800).12 The smoothed trajectory is

constructed by taking all the averaged positions{rav}, i.e, it represents the branchpoint trajectory
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Figure 3: Illustration of the procedure for identification of the localization traps. Left frame:
representative smoothed trajectory (see text) of the branchpoint of an H-polymer. Middle frame:
the same trajectory after dividing the points into cells with different density of pointsρp, and
removing the low-density cells. Different intervals of density are represented with different colors.
Yellow: 1≤ ρp < 3; green: 3≤ ρp < 4; cyan: 4≤ ρp < 6; blue: 6≤ ρp < 8; red:ρp ≥ 8. The red
points correspond to cells of density equal to or above the threshold valueρth = 8, and are used
to construct the clusters (right frame) representing the centers of the localization traps. The same
representation scale is used in the three panels.

averaged over the local, fast Rouse-like vibrations occurring within the entanglement time. The

total number of positions in the smoothed trajectory is of the order of 104 which, as mentioned

above, covers a simulation time scale oft ∼ 2×107. As can be seen in the figure, the trajectory

reflects the motion of the branchpoint over a collection of traps. However, there is not a clear

separation between different traps. The character of the traps (dense or diffuse) and the shape of

the trajectories change significantly between different systems and even within the same system.

Despite the fact that different traps are separated by ill-defined, diffuse interfaces, it is still

possible to identify the centers of the traps. This can be done by performing a density-based cluster

analysis of each trajectory. The underlying idea of this procedure is to solve regions of very high

density of branchpoint positions, i.e, the regions in the trajectory that are more frequently visited

by the branchpoint. This performs vibrations around the center of the trap, and occasionally jumps

to another trap, where it is localized until it comes back to the original trap or moves to a new one.

These wide vibrations and jumps lead to the diffuse, ill-defined interfaces separating the traps. The

density-based cluster analysis identifies clusters of branchpoint positions at high-density regions
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Figure 4: Distribution of the grid sizerb for the simulated systems.

of the trajectory, and removes the irrelevant low-density interfacial regions.

We use an algorithm based on the approach of Xuet al.25 For every point in the trajectory we

calculate the distancernn to its nearest neighbor point in the same trajectory. Then weconstruct

a 3d-grid with bin size,rb, identical to themaximumof all the rnn-values obtained within the

trajectory. Even for trajectories of asamesystem, the set ofrnn-values, and therefore also the value

rb of the bin size, will depend on each specific trajectory. The distribution of therb values for

all the simulated systems is plotted in Figure 4. The specificvalue of the bin sizerb represents

the size of the largest ‘hole’ that can be found within the considered trajectory. Thus, the whole

trajectory can be mapped to a set of cells filled by points representing the branchpoint positions,

and the empty cells do not form part of the trajectory.

Each point of the trajectory is assigned to the cell of the 3d-grid that contains its position. For

each cell, of volumer3
b, in the 3d-grid of a given trajectory, we define the local density of points,

ρp = npr−3
b , with np the number of trajectory points within the cell. We find that the local density of

points is not homogeneously distributed along the trajectory. There are regions dominated by high-

density cells separated by regions of low-density cells, the first ones corresponding to the cores of
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the traps. This feature is illustrated in the middle frame ofFigure 3, which shows, for the same

trajectory of the left frame and in the same representation scale, branchpoint positions belonging

to cells with densityρp ≥ 1. Different colors correspond to different ranges of density of the cells

(see caption). The red points are located in the most dense cells, with ρp ≥ 8. The middle frame

of Figure 3, by removing points in the low-density cells (ρp < 1) that are visited by fast large-

amplitude vibrations, nicely illustrates the formation oflocalization traps. It also demonstrates

that the points in the cells of high density are not randomly distributed over the trajectory, but are

organized into clusters.

We use the high-density clusters to identify the centers of the traps. First we fix a threshold

density valueρth for all the branchpoint trajectories of a given system. Points in cells with local

densityρp < ρth are discarded for the cluster analysis. To select the threshold valueρth we first

determine, for each cell in each trajectory, theintegerpart of the local densityρ(int)
p = int(ρp).

Second, we determine for each trajectory the maximum value of the former integer local densities,

ρ(i,max)
p = max{ρ(int)

p }. The obtained value ofρ(i,max)
p , which is integer by construction, will be

degenerate, i.e, there will be several cells in the trajectory with densityρp ≥ ρ(i,max)
p . In order

to warrant the selection of points for all the trajectories in the system, we define the threshold

valueρth as theminimumof theρ(i,max)
p -values obtained for the different trajectories. Finally,for

each trajectory we select all the branchpoint positions located at the cells with densityρp ≥ ρth.

We define the central regions of the traps as the clusters of such selected positions. Two of these

selected positions in a same trajectory are assigned to a same cluster if they are at mutual distance

r ≤ rb/2, i.e., not larger than half the bin size of the 3d-grid of thetrajectory. Likewise, two

clusters merge into a single cluster if some point of one of the two clusters is at a distancer ≤ rb/2

from some other point of the other cluster. The right frame ofFigure 3 shows the high-density

clusters (ρp ≥ ρth), obtained by the former procedure, that correspond to the full trajectory of

the left frame. The density-based cluster analysis provides well-defined separated trap centers for

branchpoint localization.
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4 Analysis of the time and length scales for branchpoint motion

Figure 5: Scheme of the motion of the branchpoint between traps. The grey arrows indicate the
distances between the centers-of-mass of the corresponding high-density clusters. The red dashed
line with the red circle illustrates a fluctuation of the branchpoint out of the trap.

Once we have indentified the high-density clusters in every trajectory of the simulated systems,

we analyze the motion between traps. We consider that a pointof a given trajectory is in a trap if

it belongs to one of the high-density clusters (i.e.,ρp ≥ ρth) defined above. If it is not the case, we

consider that it belongs to one of the ‘transient’ intervalscorresponding to the diffuse interfaces

separating the traps. In this way each trajectory can be mapped to a time-dependent discontinuous

functionK(t), where 1≤ K ≤ nt is an index denoting each of thent traps in the trajectory, andt is a

discrete time variable denoting the saved points of the trajectory (see above). If the timet belongs

to one of the transient intervals,K(t) = 0. In Figure 5 one simple case of the branchpoint motion

between three traps is schematically depicted. In this scheme, the branchpoint is placed at timet1

in the first trap (K(t1) = 1), at timet2 it moves to the second trap (K(t2) = 2), at timet3 it escapes

from the second trap (K(t3) = 0), and finally at timet4 it is placed in the third trap (K(t4) = 3).

Figure 6 represents a typical realization ofK(t) for the H-polymer. Only data withK(t)> 0

are shown, i.e., the transient intervals (K(t) = 0) appear as blank spaces blinking between the

intervals in the traps (blue symbols). During a transient interval the branchpoint makes excursions
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Figure 6: Time evolution of the trap indexK(t) for a typical branchpoint trajectory of the H-
polymer with four different traps. Symbols forK(t) = 0 are not shown. Thus, transient intervals
appear as blank spaces blinking within or between residenceintervals. Dotted lines are guides for
the eyes. The red double-arrows indicate two residence intervals in the trap K=4, separated by
a visit to the trap K=1. Main panel (a): whole trajectory. Insets (b) and (c): selected intervals,
as indicated by squares with arrows. The symbol size in the inset (c) corresponds to the time
resolution of the trajectory∆t = 2000. To facilitate visualization, symbols sizes in (a) and(b) are
bigger than∆t, so they frequently hide short transient intervals, as illustrated by passing from (a)
to (b) and from (b) to (c).

out of the current trap, finally coming back to the same trap ormoving to another one. We define

a transient interval[ti, t j ], of durationτt = t j − ti, in the discrete time sequence of a branchpoint

trajectory, as that obeying the conditions: i)K(t) = 0 for ti ≤ t ≤ t j , ii) K(ti−1) 6= 0, and iii)

K(t j+1 6= 0). We define a residence interval of a branchpoint in a given trap k as an interval[t0, tf],

of durationτr = tf − t0, with the conditions: i)K(t0) = K(tf) = k, ii) K(t) = k or 0 for t0 < t < tf,

iii) K(t ′) 6= k at the largestt ′ < t0 for which K(t ′) 6= 0, and iv)K(t ′′) 6= k at the smallestt ′′ > tf for

whichK(t ′′) 6= 0. Therefore, two timestk, tl for which the branchpoint is in thesametrapk belong

to different residence intervals if there is, at least, one timetk < t < tl at which the branchpoint

visits another trapk′ 6= k. Otherwise (K(t) = k or 0 for tk < t < tl ), they will belong to the same

residence interval.
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Figure 7: Distributions of residence times (circles) and transient times (triangles). Circles and
triangles with identical colors correspond to the same simulated system (see legend). The lines
indicate approximate power-law behavior (exponents are indicated). The black double-arrow indi-
cates the range of values obtained for the average transienttime. The green double-arrow indicates
the approximate range for the onset of the apparent reptative regime in the MSD of the branchpoint
(see below).

Figure 7 shows the distributionsp(τ) of transient and residence times for all the simulated

systems. We find extremely broad distributions, that can be approximated by power laws,p(τ) ∼

τ−2.2 andτ−1 for the transient and residence times respectively. We estimate the average transient

time as〈τt〉=
∫

τtp(τt)dτt/
∫

p(τt)dτt, finding values, for all the simulated systems, of the order of

〈τt〉 ∼ 104, i.e, about 5 entanglement times. The distribution of transient times shows a much faster

decay than the distribution of residence times. This indicates that most of the transient intervals

correspond to fast explorations of the interfacial regions, before coming back to the original trap

or moving to another one. Long explorations are very unfrequent events. Unfortunately we cannot

estimate, in a similar manner, an average residence time,〈τr〉, from the data in Figure 7. Whereas

the long-time contribution ofp(τt) is already negligible at the end of the simulation window, in

the former integrals for computing〈τt〉, it is not the case forp(τr). Indeed, the observed power-
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law p(τr)∼ τ−1
r cannot be extrapolated to arbitrarily long times since thiswould lead to divergent

values of〈τr〉. A correct estimation of〈τr〉 would require the knowledge ofp(τr) beyond the

simulation window. Still, by integration over the simulation window, we can determine a lower

bound for〈τr〉 of the order of 5×106.

Though the commonscaling p(τr)∼ τ−1
r is evident, theoverlapof all the distributionsp(τr) is

an artifact of the used normalization
∫

p(τr)dτr = 1, where the integral is limited to the simulation

window. The scalingp(τr)∼ τ−1
r will break down (changing to a steeper behavior) at times beyond

the simulation window. We expect that the corresponding crossover will strongly depend on the

system, occurring at later times for the systems with more entangled side arms.
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Figure 8: Mean-squared displacement of the branchpoint, divided byt1/2, for the simulated sys-
tems.

Figure 8 shows the MSD of the branchpoint, normalized byt1/2, for all the investigated sys-

tems. As for the van Hove function (see above), statistics have been improved by averaging over the

branchpoint and the three nearest monomers in each of the arms stemming from the branchpoint.

At times in the range oft ∼ 6×105 to 6×106 (depending on the system), the ratio〈∆r2(t)〉/t1/2
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for the asymmetric branched polymers shows a crossover to anapparent horizontal plateau. This

is consistent with reptational motion of the main backbone (for pure reptation1 〈∆r2(t)〉 ∼ t1/2),

which is expected at time scales after full relaxation of theside arms (this is not the case for the

Cayley tree, where relaxation is completed by retraction18). If reptation of the branchpoint (or

retraction in the case of the Cayley tree) is interpreted as adiffusion over a collection of traps,

the time scale for the diffusive step has an extremely broad distribution, as reflected in Figure 7.

Thebeginningof the reptation regime in the MSD of the branchpoint is dominated by the fastest

branchpoints, which have explored more traps (with shorterresidence times). However, there are

branchpoints that are still residing in their original traps over time scales longer than the onset of

reptation in the MSD, and obviously much longer than the relaxation timeτa of the side arm — the

lower bound estimated for〈τr〉 = 5×106 (see above) is indeed much larger thanτa (see Table 1).

This long-lived traps arise even in the 881-stars (τa ∼ 4×104) where the length of the side arm is

just one entanglement.

Table 1: Values ofρth, τa, Φ(τa) and dilated tube diametera (for dilution exponentsαd = 1 and
4/3) obtained for all the branched systems.19 For the linear chains we find a much lower threshold
density,ρth = 2.

system ρth τa Φ(τa) a(αd = 1) a(αd = 4/3)
881 8 37000±9000 0.849±0.011 9.68±0.20 9.95±0.23
882 17 439000±65000 0.685±0.013 10.78±0.26 11.48±0.31

mix11 6 962000±265000 0.278±0.021 16.96±0.89 21.02±1.37
mix21 10 1193000±221000 0.373±0.014 14.62±0.49 17.23±0.69
Y2214 10 308000±56000 0.692±0.013 10.73±0.26 11.41±0.31
Y4212 15 349000±80000 0.678±0.009 10.83±0.23 11.56±0.27
Cayley 13 360000±87000 0.623±0.018 11.30±0.33 12.23±0.42

H 8 275000±39000 0.632±0.006 11.22±0.22 12.11±0.25
comb 14 401000±57000 0.593±0.010 11.59±0.27 12.64±0.33

The fact that hopping between the traps may occur at times much longer than the side arm re-

laxation time, even if the side arm is very weakly entangled,might question the usual interpretation

of the branchpoint diffusivityD in hierarchical tube models. Actually, this intervenes in the model

to effectively account for the friction associated to the relaxed side arm,19 this friction affecting

the time scale for the ultimate relaxation of the backbone byreptation. Our analysis suggests that
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it should be understood just in this (pragmatic) way, and notas describing a hopping motion with

a precise characteristic time scale. In its original definition, the branchpoint diffusivity is given

by D = p2a2
0/2τa, with a0 the original undilated tube diameter andp2 (hopping parameter) some

dimensionless factor. More elaborated expressions ofD in hierarchical models (see, e.g., a recent

review in Ref.19) introduce corrections to account for, e.g., hopping in thedilated tube and back-

bone frictional contributions. In all cases the hopping time scale is given byτa. Our analysis shows

that this assumption is not justified and that the definition of a precise hopping time in itself has no

major physical significance.
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Figure 9: Distribution of distances between consecutivelyvisited traps for all the studied systems
(see legend). The vertical dashed line indicates the original undilated tube diameter. The double-
arrows comprise the range of dilated tube diameters reported in Table 1 for the pure branched
systems (black double-arrow) and the star/linear mixtures(blue double-arrow).

The functionK(t) provides for each branchpoint the temporal sequence of visited traps. This

allows us to compute distances betweenconsecutivelyvisited traps. We define such distances as the

distances between the centers-of-mass of the corresponding high-density clusters (see Figure 5).

Figure 9 shows, for all the simulated systems, the distribution of distancesg(d) between consec-
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Figure 10: Distribution of the number of traps per branchpoint trajectory in the investigated sys-
tems.

utively visited traps. The data in Figure 9 have limited statistics. This is a consequence of two

factors. First, the number of branchpoints per simulation box is relatively small (a few hundreds).

Second, the trajectories show a small number of traps (less than 7 per trajectory), which unavoid-

ingly leads to a reduced number of distances. The distribution of the number of traps per trajectory

is shown in Figure 10. Good statistics for the distributionsin Figure 9 would only be achieved

by extending considerably the time scale of the simulations(to increase the number of traps per

trajectory and the corresponding number of distances). However, this would be beyond the limit of

current supercomputation resources. We have indeed employed an unusual amount of CPU time,

about 3.5 million core-hours, for the present work. In spiteof their limited statistics, the distribu-

tions for all pure branched polymer melts and star/linear mixtures in Figure 9 unambiguosly exhibit

a clear, broad peak centered at a distanced∼ 11. The broad character of the peak is consistent with

the absence of a well-defined, single length scale for hopping, as anticipated by inspection of the

van Hove function in Figure 2. The distribution of the distances between the traps for the linear

chain is much broader and shifted to longer distances. However, we do not give a major physical
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significance, in terms of ‘hopping’, to the results for the linear chain, since traps there have very

low densities (the threshold densityρth = 2 is much lower than for the branched systems and for

the mixtures, see Table 1). Traps for the linear chains are also much more sparse, as demonstrated

by computing the distribution of radii of gyration of the high-density clusters (Figure 11). Both the

much lower density and larger size of the traps in the linear chains are a consequence of the faster

and broader back-and-forth motions of the ‘branchpoint’, which does not have to drag a side arm

during its reptative motion. Thus, branchpoint trajectories for the linear chains are very diffuse and

traps do not reflect a real localization of the branchpoint.

As explained above, the cluster analysis is based on preselecting branchpoint positions that are

located in cells with density above a threshold value,ρp ≥ ρth. The latter is strongly dependent on

the system. It varies fromρth = 6 in the mixture mix11 toρth = 17 in the 882-stars (see second col-

umn in Table 1). Having noted this, it must be stressed that the obtained distributions of distances

(regarding the location of the peaks) are not affected within statistics whatever reasonable choice

of ρth is made. We find very similar results by using, for each system, a threshold density about 25

% lower than the respective value given in Table 1. The clusters of points in the high-density cells

(ρp ≥ ρth) tend to be surrounded also by dense cells. Using a lower threshold density,ρ ′
th < ρth,

increases the number of points per cluster. However, this rarely leads to merging of the original

clusters, provided thatρ ′
th is high enough to remove the low-density cells. Thus, the original num-

ber of clusters (obtained forρth) is not significantly altered. Moreover, the higher population of the

clusters forρ ′
th does not significantly change either the original distribution of distances found for

ρth, because the centers-of-mass of the clusters are dominatedby the contribution of the highest

density cells. This is demonstrated in Figure 12, where we plot the distribution of the distances be-

tween the traps for two threshold densities: the one listed in Table 1 (ρth) andρ ′
th that is 25% lower

thanρth. In summary, the algorithm used here provides a sound, robust method for identifying

localization traps and distances between the traps in architecturally complex polymers.
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Figure 11: Distribution of the radii of gyration of the trapsin the investigated systems.
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5 Discussion

We confront the former characterization of the traps with predictions of tube models. Within the

dynamic tube dilution (DTD) hypothesis, the diffusive stepof the branchpoint in the tube is given

by the value of the dilated tube diameter,a, at the longest relaxation time of the side arm,τa:2,9

a= a0Φ−αd/2(τa). (4)

The original undilated tube diameter,a0, takes a valuea0 = 8.92± 0.13 for the simulated

model.19,21 The functionΦ(t) is the tube survival probability, andαd is the exponent for dilu-

tion of the entanglement network. The latter is assumed to take a valueαd = 1 or αd = 4/3.9

Without invoking model-dependent outputs from tube theories, the tube survival probability can

be independently computed from the simulation data. This isobtained by analyzing the correlation

function of the tangent vectors of the chain. The relaxationtime τa is obtained by analyzing the

decay of the end-to-end correlation function of the side arm. The procedure for computingΦ(t)

andτa has been described in detail in Ref.19 Table 1 shows the values ofΦ(τa) obtained for all the

simulated systems, as well as the corresponding values atτa of the dilated tube diametera. The

latter is obtained from Eq. (4) for both values of the dilution exponentαd = 1 and 4/3. The dilated

tube diameter for the pure branched polymers ranges from 9.7(for 881-stars withαd = 1) to 12.6

(for combs withαd = 4/3). The strength of dynamic tube dilution for branchpoint hopping is re-

lated to the fraction of relaxed material at the timeτa. As discussed in Ref.19 and consistently with

results in Table 1, the former fraction grows by increasing the length and the number of the side

arms. Therefore, since the dilated tube diameter is inversely proportional toΦαd/2(τa), dilation

is stronger for the simulated stars with side arms ofZ = 2 entanglements than for the 881-stars.

Likewise, the dilated tube is wider for the simulated combs and H-polymers than for the stars. Be-

cause of the high concentration of short chains (of sameZ = 3 as the side arms of the stars) in the

star/linear mixtures, tube dilation is much stronger than in the pure systems. Thus, in the mixture

mix11 the dilated diameter isa= 17 and 21 forαd = 1 and 4/3, respectively.
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In spite of the limited statistics of the distributions in Figure 9, the peaks are clearly centered

at distances larger than the original undilated tube diameter a0 ≈ 9. The centers of the peaks in

the pure branched systems are consistent with the range of values (indicated by the black double-

arrow) reported in Table 1 for the dilated tube diameter. However, this is not the case for the

star/linear mixtures, whose distributionsg(d) are hardly distinguishable from those of the pure

branched systems, and centered at values much smaller than the range of expected dilated diam-

eters (blue double-arrow). The interpretation of these results is not obvious. It might be that

the apparent agreement between the dilated tube diameter and the maximum ofg(d) for the pure

branched systems is fortuitous, as suggested by the strong disagreement in the case of the mix-

tures. The coincidence (within statistics) of both the distributionsg(d) and the scaling ofp(τr)

suggests instead a common picture for all the branched polymers in the pure state and in the mix-

tures. Namely, long-time reptation of the branchpoint occurs via motion over a network of traps

with very similar static properties. Dynamic differences between the long-time dynamics of the

different systems are related to the different frequency ofthe hops (note that, as discussed above,

the respective distributionsp(τt) aredifferentsince the scalingp(τt) ∼ τ−1
t will break down at

different times for each system). This different frequencyoriginates from the different effective

friction associated to the side arm in each system .

In summary, the analysis of residence times and distances between traps reveals two interesting

results:

i) The absence of a characteristic time scale for branchpoint hopping, together with the presence

of long-living traps far beyond the arm relaxation time. Hence, the branchpoint diffusivity intro-

duced by hierarchical models should be understood as an effective description of friction, relevant

for reptation of the backbone and associated to the drag of the relaxed side arms, and not as the

description of a hopping motion with a characteristic time scale. The fact that, the average resi-

dence times within the traps seem to be indeed much longer than the time scale (τa) assumed by the

hierarchical models, is compensated by the actual values found for the hopping parameter, much
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lower19 than the naive valuep2 ∼ 1 originally proposed.

ii) The apparent independence of the typical hopping distance on the strength of dynamic tube

dilution. As discussed in Refs.,18,19 the mechanism of DTD seems to be essential to describe

localization of the branchpoint during retraction of the side arm, and to account for the effective

friction exerted by the relaxed side arms. However, long-time reptation seems to occur more along

a partially dilated tube (similar in all investigated systems) than along that expected from DTD.

6 Conclusions

We have performed large-scale simulations of melts of entangled pure branched polymers, as well

as of star/linear mixtures. By performing a density-based cluster analysis of the branchpoint trajec-

tories, we have identified localization traps and characterized typical diffusive steps for branchpoint

motion. We find that these are characterized by broad distributions of time and length scales. Our

method does not invoke tube-based model dependent assumptions. It is based on a purely geomet-

ric approach, providing information on branchpoint dynamics by a direct real-space analysis of

the trajectories. The branchpoint motion can be seen as the motion over a network of traps at the

time scales corresponding to the reptation regime. The analysis reveals some unexpected results.

Residence times within the traps are broadly distributed, even extending to times much longer (by

decades) than the side arm relaxation time. This feature is observed even in the case of very weakly

entangled side arms. The distributions of distances between consecutively visited traps are very

similar for all the investigated branched polymers, even though tube dilation (induced by DTD) is

much stronger in the star/linear mixtures than in the pure branched systems. Whether these results

are compatible with the current versions of hierarchical models is an open issue. Our analysis sug-

gests that the diffusivity of the branchpoint introduced byhierarchical models must be understood

as a parameter to account for the effective friction associated to the relaxed side arm, and not as a

description of a hopping process with a precise time scale (which definitely does not correspond to
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the side arm relaxation time).

7 Acknowledgements

We acknowledge support from projects FP7-PEOPLE-2007-1-1-ITN (DYNACOP, EU), MAT2012-

31088 (Spain) and IT654-13 (GV, Spain). We acknowledge the programs PRACE, HPC-Europa2

and ESMI (EU), and ICTS (Spain) for generous allocation of CPU time at GENCI (France), HLRS

and FZJ-JSC (Germany) and CESGA (Spain). We thank D. J. Read,C. Das and C. Tzoumanekas

for useful discussions.

References

(1) Doi, M.; Edwards, S. F.The Theory of Polymer Dynamics; Oxford University Press, USA,

1986.

(2) McLeish, T. C. B.Advances in Physics2002, 51, 1379–1527.

(3) Read, D. J.; Auhl, D.; Das, C.; den Doelder, J.; Kapnistos, M.; Vittorias, I.; McLeish, T. C. B.

Science2011, 333, 1871–1874.

(4) Larson, R. G.Macromolecules2001, 34, 4556–4571.

(5) Das, C.; Inkson, N. J.; Read, D. J.; Kelmanson, M. A.; McLeish, T. C. B.Journal of Rheology

2006, 50, 207–234.

(6) Van Ruymbeke, E.; Bailly, C.; Keunings, R.; Vlassopoulos, D. Macromolecules2006, 39,

6248–6259.

(7) Chen, X.; Costeux, C.; Larson, R. G.Journal of Rheology2010, 54, 1185–1205.

(8) Park, S.; Shanbhag, S.; Larson, R.Rheologica Acta2005, 44, 319–330.

(9) Milner, S. T.; McLeish, T. C. B.Macromolecules1997, 30, 2159–2166.

24



(10) Marrucci, G.Journal of Polymer Science1985, 23, 159–177.

(11) McLeish, T. C. B.Journal of Rheology2003, 47, 177–198.

(12) Zhou, Q.; Larson, R. G.Macromolecules2007, 40, 3443–3449.

(13) Frischknecht, A. L.; Milner, S. T.; Pryke, A.; Young, R.N.; Hawkins, R.; McLeish, T. C. B.

Macromolecules2002, 35, 4801–4820.

(14) McLeish, T. C. B. et al.Macromolecules1999, 32, 6734–6758.

(15) Kirkwood, K. M.; Leal, L. G.; Vlassopoulos, D.; Driva, P.; Hadjichristidis, N.Macro-

molecules2009, 42, 9592–9608.

(16) Wang, Z.; Chen, X.; Larson, R. G.Journal of Rheology2010, 54, 223–260.

(17) Zamponi, M.; Pyckhout-Hintzen, W.; Wischnewski, A.; Monkenbusch, M.; Willner, L.;

Kali, G.; Richter, D.Macromolecules2010, 43, 518–524.
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