61 research outputs found

    Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica.

    Get PDF
    Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica

    DL5o da bactéria Aeromonas hydrophila para o matrinxã, Brycon amazonicus

    Get PDF
    In order to determine the lethal dose (96-h LD50) of the bacteria Aeromonas hydrophila to matrinxã, Brycon amazonicus, to be applied in challenge tests, 90 fish (63.23 ± 6.39 g) were divided into five treatments, with different bacterial solutionsT1 - Control (0.9% NaCl saline solution); T2 (4 x 10(11) cells/ mL); T3 (5 x 10(11) cells/ mL); T4 (1.36 x 10(12) cells/ mL) and T5 (3.06 x 10(12) cells/ mL). Fish were previously anesthetized with benzocaine (60 mg L-1), inoculated in the peritoneal cavity with the bacterial suspensions and then distributed into fifteen 80-L test chambers, where the water variables were monitored and fish mortality was observed. The experiment was randomly designed in three replicates and the 96-h LD50 was estimated according to the trimmed Spearman-Karber method. Water quality variables remained within adequate ranges for fish health and performance. Fish mortality rate increased with the bacterial concentrations of A. hydrophila (T1 = 0%; T2 = 16.66%; T3 = 44.44%; T4 = 72.22% and T5 = 100%), and the first mortalities were observed after 57 h, although the signs of the bacterial infection were already observed 24 h after the inoculation. The results indicate that the 96-h LD50 value of A. hydrophila to matrinxã is 6.66 x 10(11) cells/ mL.Para determinar a dose letal (DL50 96-h) da bactéria Aeromonas hydrophila para o matrinxã, Brycon amazonicus, com aplicabilidade para testes de desafio, foram utilizados 90 peixes (63,23 ± 6,39 g), divididos em cinco tratamentos, com diferentes soluções bacterianas: T1 - Controle (solução salina 0,9% NaCl); T2 (4 x 10(11) células/ mL); T3 (5 x 10(11) células/ mL-1); T4 (1,36 x 10(12) células/mL-1) e T5 (3,06 x 10(12) células/ mL-1). Os peixes foram previamente anestesiados com benzocaína (60 mg L-1), inoculados na cavidade peritoneal com as suspensões bacterianas e distribuídos em 15 aquários de vidro de 80 L de capacidade, com aeração constante. O experimento teve duração de 96 h, no qual foram monitoradas a mortalidade e a qualidade da água. O delineamento experimental foi inteiramente casualisado com três réplicas e a DL50 96-h foi estimada de acordo com o método Spearman-Karber. Durante o experimento os parâmetros físico-químicos da água permaneceram dentro das condições consideradas adequadas para o desenvolvimento e saúde dos organismos aquáticos. A mortalidade dos peixes aumentou nas concentrações crescentes de A. hydrophila (T1 = 0%; T2 = 16,66%; T3 = 44,44%; T4 = 72,22% e T5 = 100%), contudo, as primeiras mortalidades ocorreram em 57 h após a inoculação das concentrações bacterianas, sendo observados os primeiros sinais de infecção em 24 h após a inoculação. Os resultados indicam que o valor da DL50 96-h da bactéria A. hydrophila para o matrinxã foi igual a 6,66 x 10(11) células/mL de solução salina

    Recombinant interleukin-1beta activates the hypothalamic–pituitary–interrenal axis in rainbow trout, Oncorhynchus mykiss

    No full text
    The present study provides the first direct evidence that implicates fish cytokines as the effector molecules by which the immune system signals the neuroendocrine system and activates the hypothalamic–pituitary–interrenal stress axis. I.p. injections of trout recombinant interleukin-1beta (rIL-1beta) or E. coli lipopolysaccharide (LPS), at concentrations known to induce immune/inflammatory responses in vivo (0·1–0·6 nmol/kg and 1·3 mg/kg respectively), significantly elevated plasma cortisol levels in a dose- and/or time-dependent manner. However, in contrast to general stress responses in fish, under the conditions employed in this study, no specific treatment effects on plasma glucose levels could be demonstrated. The trout IL-1beta peptides (P1 and P3), which are homologous to receptor-binding sequences of human IL-1beta, failed to influence the prevailing cortisol concentration even though an equivalent dose has been found to have immunostimulatory properties in vivo. Blockade of endogenous ACTH release by administration of the synthetic glucocorticoid dexamethasone prevented the rIL-1beta/LPS-mediated elevation of plasma cortisol, suggesting that IL-1beta and LPS modulate cortisol secretion via effects at the level of the hypothalamic–pituitary axis. These data indicate that, with respect to IL-1beta, cytokine signalling between the immune and neuroendocrine systems in mammals appears to be conserved in lower vertebrates
    corecore