820 research outputs found

    Cranial osteopathy: its fate seems clear

    Get PDF
    BACKGROUND: According to the original model of cranial osteopathy, intrinsic rhythmic movements of the human brain cause rhythmic fluctuations of cerebrospinal fluid and specific relational changes among dural membranes, cranial bones, and the sacrum. Practitioners believe they can palpably modify parameters of this mechanism to a patient's health advantage. DISCUSSION: This treatment regime lacks a biologically plausible mechanism, shows no diagnostic reliability, and offers little hope that any direct clinical effect will ever be shown. In spite of almost uniformly negative research findings, "cranial" methods remain popular with many practitioners and patients. SUMMARY: Until outcome studies show that these techniques produce a direct and positive clinical effect, they should be dropped from all academic curricula; insurance companies should stop paying for them; and patients should invest their time, money, and health elsewhere

    Increased sensitivity for detecting malaria parasites in human umbilical cord blood using scaled-up DNA preparation

    Get PDF
    BACKGROUND: All mothers donating umbilical cord blood units to the NHS cord blood bank undergo an assessment for the likelihood of prior exposure to malaria infection. Those deemed at risk due to a history of travel to, or residence in, malaria endemic regions are screened serologically to detect anti-malaria antibodies. A positive result excludes the use of the cord blood for transplant therapy unless a risk assessment can ensure that malaria transmission is extremely unlikely. This paper details the screening of cord blood units from malaria serology positive mothers to detect malaria parasite DNA using a highly sensitive nested PCR. METHODS: Uninfected blood from a healthy volunteer was spiked with known quantities of malaria parasites and 5 millilitre and 200 microlitre aliquots were subjected to DNA extraction using QIAamp DNA maxi and DNA mini kits respectively. Nested PCR, to detect malarial SSU rRNA sequences, was performed on the purified DNA samples to determine the limit of detection for this assay with both extraction methodologies. Following assay validation, 54 cord blood units donated by mothers who were positive for anti-malaria antibodies were screened by this approach. RESULTS: When DNA was purified from 5 millilitres of blood it was possible to routinely detect as few as 50 malaria parasites per millilitre using nested PCR. This equates to a significant increase in the sensitivity of the current gold standard nucleic acid amplification technique used to detect malaria parasites (routinely performed from > 200 microlitre volumes of blood). None of the 54 donated cord blood units from serology positive mothers tested positive for malaria parasites using this scaled up DNA preparation method. CONCLUSION: Serological testing for malaria parasites may be overly conservative, leading to unnecessary rejection of cord blood donations that lack malaria parasites and which are, therefore, safe for use in stem cell therapy

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings

    Classifying and scoring of molecules with the NGN: new datasets, significance tests, and generalization

    Get PDF
    <p>Abstract</p> <p/> <p>This paper demonstrates how a Neural Grammar Network learns to classify and score molecules for a variety of tasks in chemistry and toxicology. In addition to a more detailed analysis on datasets previously studied, we introduce three new datasets (BBB, FXa, and toxicology) to show the generality of the approach. A new experimental methodology is developed and applied to both the new datasets as well as previously studied datasets. This methodology is rigorous and statistically grounded, and ultimately culminates in a Wilcoxon significance test that proves the effectiveness of the system. We further include a complete generalization of the specific technique to arbitrary grammars and datasets using a mathematical abstraction that allows researchers in different domains to apply the method to their own work.</p> <p>Background</p> <p>Our work can be viewed as an alternative to existing methods to solve the quantitative structure-activity relationship (QSAR) problem. To this end, we review a number approaches both from a methodological and also a performance perspective. In addition to these approaches, we also examined a number of chemical properties that can be used by generic classifier systems, such as feed-forward artificial neural networks. In studying these approaches, we identified a set of interesting benchmark problem sets to which many of the above approaches had been applied. These included: ACE, AChE, AR, BBB, BZR, Cox2, DHFR, ER, FXa, GPB, Therm, and Thr. Finally, we developed our own benchmark set by collecting data on toxicology.</p> <p>Results</p> <p>Our results show that our system performs better than, or comparatively to, the existing methods over a broad range of problem types. Our method does not require the expert knowledge that is necessary to apply the other methods to novel problems.</p> <p>Conclusions</p> <p>We conclude that our success is due to the ability of our system to: 1) encode molecules losslessly before presentation to the learning system, and 2) leverage the design of molecular description languages to facilitate the identification of relevant structural attributes of the molecules over different problem domains.</p

    Attachment site selection of ticks on roe deer, Capreolus capreolus

    Get PDF
    The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May–August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed

    Endocrine resistance in breast cancer: new roles for ErbB3 and ErbB4

    Get PDF
    Endocrine resistance is a major limitation to the successful treatment of estrogen receptor-positive (ER+) breast cancer, and the EGFR (epidermal growth factor receptor) and ErbB-2 receptor tyrosine kinases are involved in this process. A recent study now implicates the other two ErbB family members, ErbB-3 and -4. Exposure of ER+ breast cancer cells to the pure antiestrogen, fulvestrant, increased levels of ErbB-3 or ErbB-4 and sensitivity to the growth-stimulatory effects of heregulin έ±, a potent ligand for these receptors. Thus, the initial growth-inhibitory effects of fulvestrant appear compromised by cellular plasticity that allows rapid compensatory growth stimulation via ErbB-3/4. Further evaluation of pan-ErbB receptor inhibitors in endocrine-resistant disease appears warranted

    Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.

    Get PDF
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology

    Contrasting the Percutaneous Nerve Evaluation Versus Staged Implantation in Sacral Neuromodulation

    Get PDF
    Sacral neuromodulation is increasingly used for the treatment of voiding dysfunction, pelvic pain syndromes, and gastrointestinal disorders. While increased use of this technology has led to a greater understanding of its potential as well as its limitations, difficulty persists in identifying the patients that will benefit most. Either of two trial stimulation techniques is performed before placement of a permanent neuromodulator: the monopolar percutaneous nerve evaluation and the tined quadripolar staged trial. The preponderance of recent literature asserts the superior sensitivity of the staged trial over percutaneous nerve evaluation. However, the techniques offer disparate advantages, and other issues, such as cost-effectiveness, remain largely unexplored. The role of sacral neuromodulation will continue to expand as physicians and patients become increasingly aware of its therapeutic potential. Widespread adoption of this clinically superior technique will most rapidly help the greatest number of patients

    Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials

    Get PDF
    BACKGROUND: Artemisinin combination therapies (ACT), which are increasingly being introduced for treatment of Plasmodium falciparum malaria, are more effective against sexual stage parasites (gametocytes) than previous first-line antimalarials and therefore have the potential to reduce parasite transmission. The size of this effect is estimated in symptomatic P. falciparum infections. METHODS: Data on 3,174 patients were pooled from six antimalarial trials conducted in The Gambia and Kenya. Multivariable regression was used to investigate the role of ACT versus non-artemisinin antimalarial treatment, treatment failure, presence of pre-treatment gametocytes and submicroscopic gametocytaemia on transmission to mosquitoes and the area under the curve (AUC) of gametocyte density during the 28 days of follow up. RESULTS: ACT treatment was associated with a significant reduction in the probability of being gametocytaemic on the day of transmission experiments (OR 0.20 95% CI 0.16-0.26), transmission to mosquitoes by slide-positive gametocyte carriers (OR mosquito infection 0.49 95% CI 0.33-0.73) and AUC of gametocyte density (ratio of means 0.35 95% CI 0.31-0.41). Parasitological treatment failure did not account for the difference between ACT and non-artemisinin impact. The presence of slide-positive gametocytaemia prior to treatment significantly reduced ACT impact on gametocytaemia (p < 0.001). Taking account of submicroscopic gametocytaemia reduced estimates of ACT impact in a high transmission setting in Kenya, but not in a lower transmission setting in the Gambia. CONCLUSION: Treatment with ACT significantly reduces infectiousness of individual patients with uncomplicated falciparum malaria compared to previous first line treatments. Rapid treatment of cases before gametocytaemia is well developed may enhance the impact of ACT on transmission
    • …
    corecore