31 research outputs found

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Experimental observation of flow fields around active Janus spheres

    Get PDF
    The phoretic mechanisms at stake in the propulsion of asymmetric colloids have been the subject of debates during the past years. In particular, the importance of electrokinetic effects on the motility of Pt-PS Janus sphere was recently discussed. Here, we probe the hydrodynamic flow field around a catalytically active colloid using particle tracking velocimetry both in the freely swimming state and when kept stationary with an external force. Our measurements provide information about the fluid velocity in the vicinity of the surface of the colloid, and confirm a mechanism for propulsion that was proposed recently. In addition to offering a unified understanding of the nonequilibrium interfacial transport processes at stake, our results open the way to a thorough description of the hydrodynamic interactions between such active particles and understanding their collective dynamics

    On the Mysterious Propulsion of Synechococcus

    Get PDF
    We propose a model for the self-propulsion of the marine bacterium Synechococcus utilizing a continuous looped helical track analogous to that found in Myxobacteria [1]. In our model cargo-carrying protein motors, driven by proton-motive force, move along a continuous looped helical track. The movement of the cargo creates surface distortions in the form of small amplitude traveling ridges along the S-layer above the helical track. The resulting fluid motion adjacent to the helical ribbon provides the propulsive thrust. A variation on the helical rotor model of [1] allows the motors to be anchored to the peptidoglycan layer, where they drive rotation of the track creating traveling helical waves along the S-layer. We derive expressions relating the swimming speed to the amplitude, wavelength, and velocity of the surface waves induced by the helical rotor, and show that they fall in reasonable ranges to explain the velocity and rotation rate of swimming Synechococcus

    Boundaries can steer active Janus spheres

    Get PDF
    The advent of autonomous self-propulsion has instigated research towards making colloidal machines that can deliver mechanical work in the form of transport, and other functions such as sensing and cleaning. While much progress has been made in the last 10 years on various mechanisms to generate self-propulsion, the ability to steer self-propelled colloidal devices has so far been much more limited. A critical barrier in increasing the impact of such motors is in directing their motion against the Brownian rotation, which randomizes particle orientations. In this context, here we report directed motion of a specific class of catalytic motors when moving in close proximity to solid surfaces. This is achieved through active quenching of their Brownian rotation by constraining it in a rotational well, caused not by equilibrium, but by hydrodynamic effects. We demonstrate how combining these geometric constraints can be utilized to steer these active colloids along arbitrary trajectories
    corecore