32 research outputs found

    TRAF6 ubiquitinates TGFβ type I receptor to promote its cleavage and nuclear translocation in cancer

    Get PDF
    Transforming growth factor β (TGFβ) is a pluripotent cytokine promoting epithelial cell plasticity during morphogenesis and tumour progression. TGFβ binding to type II and type I serine/threonine kinase receptors (TβRII and TβRI) causes activation of different intracellular signaling pathways. TβRI is associated with the ubiquitin ligase tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6). Here we show that TGFβ, via TRAF6, causes Lys63-linked polyubiquitination of TβRI, promoting cleavage of TβRI by TNF-alpha converting enzyme (TACE), in a PKCζ-dependent manner. The liberated intracellular domain (ICD) of TβRI associates with the transcriptional regulator p300 to activate genes involved in tumour cell invasiveness, such as Snail and MMP2. Moreover, TGFβ-induced invasion of cancer cells is TACE- and PKCζ- dependent and the TβRI ICD is localized in the nuclei of different kinds of tumour cells in tissue sections. Thus, our data reveal a specific role for TβRI in TGFβ mediated tumour invasion

    Intertwining personal and reward relevance: evidence from the drift-diffusion model.

    Get PDF
    In their seminal paper 'Is our self nothing but reward', Northoff and Hayes (Biol Psychiatry 69(11):1019-1025, Northoff, Hayes, Biological Psychiatry 69(11):1019-1025, 2011) proposed three models of the relationship between self and reward and opened a continuing debate about how these different fields can be linked. To date, none of the proposed models received strong empirical support. The present study tested common and distinct effects of personal relevance and reward values by de-componenting different stages of perceptual decision making using a drift-diffusion approach. We employed a recently developed associative matching paradigm where participants (N = 40) formed mental associations between five geometric shapes and five labels referring personal relevance in the personal task, or five shape-label pairings with different reward values in the reward task and then performed a matching task by indicating whether a displayed shape-label pairing was correct or incorrect. We found that common effects of personal relevance and monetary reward were manifested in the facilitation of behavioural performance for high personal relevance and high reward value as socially important signals. The differential effects between personal and monetary relevance reflected non-decisional time in a perceptual decision process, and task-specific prioritization of stimuli. Our findings support the parallel processing model (Northoff & Hayes, Biol Psychiatry 69(11):1019-1025, Northoff, Hayes, Biological Psychiatry 69(11):1019-1025, 2011) and suggest that self-specific processing occurs in parallel with high reward processing. Limitations and further directions are discussed

    Impact of altering proximity on snack food intake in individuals with high and low executive function: study protocol.

    Get PDF
    BACKGROUND: Despite attempts to improve diet at population level, people living in material and social deprivation continue to consume unhealthy diets. Executive function - the ability to regulate behaviour and resist impulses - is weaker in individuals living in deprivation. Dietary interventions that educate and persuade people to reflect on and actively change behaviour may therefore disproportionately benefit individuals who are socioeconomically advantaged and have stronger executive function, thus exacerbating inequalities in health resulting from unhealthy diets. In contrast, manipulating environmental cues, such as how far away a food is placed, does not appeal to reasoned action and is thought to operate largely outside of awareness to influence behaviour. People eat more of a food when it is placed closer to them, an effect seemingly robust to context, food quality and body-weight status. However, previous studies of this 'proximity effect' are limited by small samples consisting mainly of university staff or students, biased towards higher socio-economic position and therefore likely stronger executive function. This study aims to test the hypothesis that placing food further away from a person decreases intake of that food regardless of executive function. METHODS/DESIGN: 156 members of the general public, recruited from low and high socio-economic groups, will be randomised to one of two conditions varying in the proximity of a snack food relative to their position: 20 cm or 70 cm. Participants are told they will be taking part in a relaxation study - and are fully debriefed at the conclusion of the session. The primary outcome is the proportion of participants eating any amount of snack food and the secondary outcome is the mean amount eaten. Executive function is assessed using the Stroop task. DISCUSSION: The proposed study takes a novel step by investigating the effect of proximity on snack food intake in a general population sample consisting of those with high and low executive function, appropriately powered to detect the predicted proximity effect. If this effect occurs irrespective of executive function and socio-economic position, it may have potential to reduce inequalities patterned by socio-economic position if implemented in real-world settings such as shops or restaurants. TRIAL REGISTRATION: Registered with the ISRCTN registry: ISRCTN46995850 on 07 October 2015.This study is supported by the Medical Research Council (MRC) and Sackler Prize, a doctoral training grant awarded to JAH. The study was also partially funded by the Department of Health Policy Research Program (Policy Research Unit in Behavior and Health [PR-UN-0409-10109]).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12889-016-3184-

    TGFβ-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFβ switch

    No full text
    During the course of breast cancer progression, normally dormant tumour-promoting effects of transforming growth factor β (TGFβ), including migration, invasion, and metastasis are unmasked. In an effort to identify mechanisms that regulate the pro-migratory TGFβ ‘switch' in mammary epithelial cells in vitro, we found that TGFβ stimulates the phosphorylation of Smad1 and Smad5, which are typically associated with bone morphogenetic protein signalling. Mechanistically, this phosphorylation event requires the kinase activity and, unexpectedly, the L45 loop motif of the type I TGFβ receptor, ALK5, as evidenced by studies using short hairpin RNA-resistant ALK5 mutants in ALK5-depleted cells and in vitro kinase assays. Functionally, Smad1/5 co-depletion studies demonstrate that this phosphorylation event is essential to the initiation and promotion of TGFβ-stimulated migration. Moreover, this phosphorylation event is preferentially detected in permissive environments such as those created by tumorigenic cells or oncogene activation. Taken together, our data provide evidence that TGFβ-stimulated Smad1/5 phosphorylation, which occurs through a non-canonical mechanism that challenges the notion of selective Smad phosphorylation by ALK5, mediates the pro-migratory TGFβ switch in mammary epithelial cells

    Oxytocin-Augmented Social Cognitive Skills Training in Schizophrenia

    No full text
    Impairments in social cognition are common in schizophrenia and predict poor functional outcome. The purpose of this proof-of-concept randomized, parallel group clinical trial was to assess whether intranasal oxytocin (OT), given before social cognitive training, enhances learning of social cognitive skills. Twenty seven male outpatients with schizophrenia participated in a 6-week (12 session) training on social cognitive skills. Training focused on three domains: facial affect recognition, social perception, and empathy. Subjects were randomly assigned (double blind) to receive either intranasal OTor placebo 30 min before each session. Participants did not receive OT between sessions or on the day of assessments. We evaluated scores on social-cognition measures, as well as clinical symptoms and neurocognition, at baseline, 1 week following the final training session, and 1 month later. Our prespecified primary outcome measure was a social-cognition composite score comprised of five individual measures. There were main effects of time (indicating improvement across the combined-treatment groups) on the social-cognition composite score at both 1 week and 1 month following completion of training. Subjects receiving OT demonstrated significantly greater improvements in empathic accuracy than those receiving placebo at both posttreatment and 1 month follow up. There were no OT-related effects for the other social cognitive tests, clinical symptoms, or neurocognition. This study provides initial support for the idea that OT enhances the effectiveness of training when administered shortly before social cognitive training sessions. The effects were most pronounced on empathic accuracy, a high-level social cognitive process that is not easily improved in current social cognitive remediation programs

    Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: a randomized trial

    No full text
    Reduced social motivation is a hallmark of individuals with autism spectrum disorders (ASDs). Although the exact neural mechanisms are unclear, oxytocin has been shown to enhance motivation and attention to social stimuli, suggesting a potential to augment social reinforcement learning as the central mechanism of behavioral interventions in ASD. We tested how reinforcement learning in social contexts and associated reward prediction error (RPE) signals in the nucleus accumbens (NAcc) were modulated by intranasal oxytocin. Male adults with a childhood diagnosis of ASD (n = 15) and healthy controls (n = 24; aged 18–26 years) performed a probabilistic reinforcement learning task during functional magnetic resonance imaging in a single-center (research center in Germany), randomized double-blind, placebo-controlled cross-over trial. The interventions were intranasal oxytocin (Syntocinon®, Novartis; 10 puffs = 20 international units (IUs) per treatment) and placebo spray. Using computational modeling of behavioral data, trial-by-trial RPE signals were assessed and related to brain activation in NAcc during reinforcing feedback in social and non-social contexts. The order of oxytocin/placebo was randomized for 60 participants. Twenty-one participants were excluded from analyses, leaving 39 for the final analysis. Behaviorally, individuals with ASD showed enhanced learning under oxytocin when the learning target as well as feedback was social as compared to non-social (social vs. non-social target: 87.09% vs. 71.29%, 95% confidence interval (CI): 7.28–24.33, p = .003; social vs. non-social feedback: 81.00% vs. 71.29%, 95% CI: 2.81–16.61, p = .027). Correspondingly, oxytocin enhanced the correlation of the RPE signal with NAcc activation during social (vs. non-social) feedback in ASD (3.48 vs. −1.12, respectively, 95% CI: 2.98–6.22, p = .000), whereas in controls, this effect was found in the placebo condition (2.90 vs. −1.14, respectively, 95% CI: 1.07–7.01, p = .010). In ASD, a similar pattern emerged when the learning target was social (3.00 vs. −0.64, respectively, 95% CI: −0.13 to 7.41, p = .057), whereas controls showed a reduced correlation for social learning targets under oxytocin (−0.70 vs. 2.72, respectively, 95% CI: −5.86 to 0.98, p = .008). The current data suggest that intranasal oxytocin has the potential to enhance social reinforcement learning in ASD. Future studies are warranted that investigate whether oxytocin can potentiate social learning when combined with behavioral therapies, resulting in greater treatment benefits than traditional behavior-only approaches

    GDF5 point mutation strikes twice--causing BDA1 and SYNS2

    Get PDF
    Growth and Differentiation Factor 5 (GDF5) is a secreted growth factor that belongs to the Bone Morphogenetic Protein (BMP) family and plays a pivotal role during limb development. GDF5 is a susceptibility gene for osteoarthritis (OA) and mutations in GDF5 are associated with a wide variety of skeletal malformations ranging from complex syndromes such as acromesomelic chondrodysplasias to isolated forms of brachydactylies or multiple synostoses syndrome 2 (SYNS2). Here, we report on a family with an autosomal dominant inherited combination of SYNS2 and additional brachydactyly type A1 (BDA1) caused by a single point mutation in GDF5 (p.W414R). Functional studies, including chondrogenesis assays with primary mesenchymal cells, luciferase reporter gene assays and Surface Plasmon Resonance analysis, of the GDF5(W414R) variant in comparison to other GDF5 mutations associated with isolated BDA1 (p.R399C) or SYNS2 (p.E491K) revealed a dual pathomechanism characterized by a gain- and loss-of-function at the same time. On the one hand insensitivity to the main GDF5 antagonist NOGGIN (NOG) leads to a GDF5 gain of function and subsequent SYNS2 phenotype. Whereas on the other hand, a reduced signaling activity, specifically via the BMP receptor type IA (BMPR1A), is likely responsible for the BDA1 phenotype. These results demonstrate that one mutation in the overlapping interface of antagonist and receptor binding site in GDF5 can lead to a GDF5 variant with pathophysiological relevance for both, BDA1 and SYNS2 development. Consequently, our study assembles another part of the molecular puzzle of how loss and gain of function mutations in GDF5 affect bone development in hands and feet resulting in specific types of brachydactyly and SYNS2. These novel insights into the biology of GDF5 might also provide further clues on the pathophysiology of OA
    corecore